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Abstract

We investigate the impact of cognitive biases and heterogeneity in firm-level forecasts of USDA
corn and soybean production estimates on market price reactions using two approaches. First,
after adjusting for cognitive biases, we decompose market surprises—defined as the difference
between USDA estimates and private forecasts—into expected and unexpected components to
test whether futures prices and volatility respond only to the unexpected component, a condition
indicative of market efficiency. Second, we construct a range of market surprise measures to
determine which best explains price movements on USDA report release days. We find that the
corn futures market exhibits informational inefficiency with respect to anchoring bias, as prices
respond to both components of the surprise, and the soybean futures market demonstrates
informational efficiency, with prices reacting solely to the unexpected surprise. The pattern is
reversed for attribution bias, with corn volatility reacting only to the unexpected surprise, and
soybean volatility to both components of the surprise. For modeling, we find that accounting for
heterogeneity among individual forecasts enhances the explanatory power of price reaction

models.
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Cognitive Biases in Industry Forecasts of USDA Reports: Implications for Price Reactions

and Market Surprise Measures
Introduction

The value, impact, and welfare effects of the U.S. Department of Agriculture (USDA) reports are
frequently measured by the commodity price and volatility movements to their release (e.g.,
Milonas 1987; Sumner and Mueller 1989; Fortenbery and Sumner 1993; Adjemian 2012; Karali
2012; Dorfman and Karali 2015; Ying, Chen, and Dorfman 2019; Adjemian and Irwin 2020;
McKenzie and Ke 2022).! These price movements are especially pronounced when the USDA
figures deviate from market expectations, where the differences between the two are commonly
referred to as market surprises (e.g., Colling, Irwin, and Zulauf 1996; Garcia et al. 1997; Good
and Irwin 2006; McKenzie 2008; Karali et al. 2019). Historically, studies have relied on
industry polls aggregated by news agencies like Bloomberg or Reuters—using the mean or the
median of individual forecasts as proxies for market expectations. However, this approach has
some limitations. First, it ignores the heterogeneity among forecasters, which could increase the
richness of the analysis and the scope of the research. Fernandez-Perez et al. (2019), for
instance, show that the dispersion among analysts’ forecasts significantly affects bid-ask spreads

in corn, soybean, and wheat futures prices during USDA report releases.

Second, it ignores various forms of biases found in market surprises. For example,
Karali, Irwin, and Isengildina-Massa (2020) demonstrate that market surprises constructed using

the median of firm-level expectations are subject to attenuation bias, and thus, the true price

!'For a comprehensive review of previous studies on the impact of various USDA reports, see Isengildina-Massa,
Karali, and Irwin (2024).



reactions are underestimated in previous studies.> Another recent study documents the existence
of cognitive biases, such as anchoring and attribution, in industry expectations of corn and
soybean production estimates for the USDA’s August Crop Production report (Karali,
Isengildina-Massa, and Irwin 2025).> The authors argue that market surprises become partly
predictable when there is any form of systematic bias in industry expectations. The
predictability of the market surprise, then, would provide profit opportunities to financial market

participants who are aware of these biases, thereby altering welfare impacts.

In this study, we investigate the informational efficiency of futures markets by testing
whether prices and volatility react to the predicted component of the USDA news induced by
anchoring and attribution biases. To this end, we first summarize the evidence of anchoring and
attribution biases in the industry expectations demonstrated in Karali, Isengildina-Massa, and
Irwin (2025). We then follow the methods outlined in Campbell and Sharpe (2009) and
Isengildina-Massa, Karali, and Irwin (2017) to decompose the market surprise into anticipated
and unanticipated components after accounting for these biases and model the price and
volatility reactions to USDA reports as a function of the decomposed surprise measures. If
market participants are aware of and account for the biases, prices and volatility should only
respond to the unexpected component of the surprise, implying an informationally efficient
market. On the other hand, if market participants are unaware of or fail to account for the
cognitive biases in industry forecasts, prices and volatility would also react to the expected

component of the surprise, suggesting an informationally inefficient market.

2 Attenuation bias refers to the systematic underestimation of the true relationship between variables, typically
caused by measurement error in the explanatory variable.

3 Anchoring bias describes the tendency to rely heavily on an initial, easily accessible reference point when forming
forecasts, with subsequent adjustments made relative to that anchor. Attribution bias reflects analysts’
overconfidence in their forecasting abilities, often stemming from previous successful predictions.
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These inefficiency concerns also raise the question of which surprise measure should be
used to assess market reaction to USDA reports. We tackle this question by developing various
surprise measures that incorporate the heterogeneity among private forecasts, as well as the
predictability due to cognitive biases, and comparing the explanatory power of the price reaction

tests across different specifications.

We find that market participants fail to account for anchoring bias in corn forecasts, as
prices respond to the predicted component of surprises—even in ex-ante analyses using the latest
available information. However, corn price volatility reacts only to the unpredicted component,
suggesting awareness of attribution bias. In contrast, soybean prices respond only to unpredicted
surprises, indicating that anchoring bias is accounted for, while volatility responds to the
predicted component, implying attribution bias is overlooked. In terms of modeling, the highest
explanatory power for corn comes from using the median forecast to compute surprises and
including the interquartile range of firm-level forecasts in an ordinary least squares (OLS) model.
For soybeans, the best results come from decomposed surprises in a fixed-effects panel model,
incorporating the median absolute deviation of firm-level forecasts. Overall, our results
highlight that accounting for firm-level forecast heterogeneity improves the explanatory power
of price reactions to USDA news. The findings of this study will help us improve how we
incorporate industry expectations information into market reaction tests to assess the value and
welfare effects of USDA reports.

Empirical Framework

Based on the findings in Karali, Isengildina-Massa, and Irwin (2025), we focus on anchoring and
attribution biases in industry forecasts to investigate whether financial market participants are

informationally efficient by testing price and volatility reactions to the predicted surprise



components induced by these cognitive biases. Note that although the regression equations
testing for anchoring and attribution biases use the forecast error and absolute forecast error,
respectively, as dependent variables, the forecast error itself is calculated in the same way as the
market surprise commonly employed in the literature. For brevity, we focus on the anchoring
bias in the main body of the paper and present the methods and empirical results for the

attribution bias in the appendix.

Anchoring bias and price reaction tests

Anchoring bias is defined as a form of cognitive bias in which people form their forecasts by
starting from an easily available reference point and then make adjustments based on this value
(Tversky and Kahneman 1974). Karali, Isengildina-Massa, and Irwin (2025) follow Campbell
and Sharpe (2009) and test for anchoring bias using a regression equation with the forecast error
as the dependent variable. We estimate the following regression equation with firm fixed

effects:

(1) FE; = a; + ¢ Deviation from Anchor; + &;; ,

where i = 1,2, -+, N represents the firms making forecasts and t = 1, 2,---, T denotes the years.
The dependent variable FEj; is the forecast error (i.e., surprise), calculated in percentages to

account for the changes in magnitudes across years as follows:

(Actual; — Forecast;;)

(2) FE; =100 x

2

Actual;

where Actual, is the actual value in year ¢ and Forecast;; is the forecast made by firm i in year
t. The deviation from anchor is defined in percentages as 100 X [(Forecast;; —

Anchor;) /Anchor;] and Anchor; is the initial starting point. Forecast errors are systematically

4



biased in a predictable manner consistent with anchoring if the slope estimate in equation (1) is

positive and statistically significant.

The finding of an anchoring bias makes the forecast error, which is equivalent to the
market surprise measure used in the literature, partly predictable. The predicted dependent
variable from equation (1), FE;;, can be considered as the expected surprise, and the predicted
residuals, &, = FE;, — FEj;, as the unexpected, “true” surprise (Campbell and Sharpe 2009;
Isengildina-Massa, Karali, and Irwin 2017). We can then use the decomposed surprise measures
to test for the price reactions by estimating the following regression equation with firm fixed

effects:

(3) APy = w; + N FE; + 1, & + €y,

where AP;; = 100 X (In P, — In P;_;) is the continuously compounded daily return on the
commodity futures contract with price P;, and it is the same for all firms (4P;; = AP, Vi). The
null hypothesis of an informationally efficient market is n; = 0, which suggests that market
participants are aware of the anchoring bias in industry forecasts and that this information is
already reflected in prices. To account for the increased sampling variability induced by using
generated regressors, we estimate the model in (3) via the generalized method of moments

(GMM) outlined in Campbell and Sharpe (2009).
Data

We utilize the same data set in Karali, Isengildina-Massa, and Irwin (2025), containing firm-
level forecasts for corn and soybean production in USDA’s Crop Production reports. These
reports are prepared and published by the National Agricultural Statistical Service (NASS)

agency of USDA and contain survey-based estimates of yield and production for major crops



consistent with their growing cycles. USDA publishes the first marketing-year production
estimates for corn and soybeans in August, then revises them through November, and finalizes
them in the January Crop Production Annual Summary (CPAS) report. We attain futures price
data from CRB Trader. Corn and soybean futures contracts are traded at the Chicago Mercantile
Exchange (CME) Group, with multiple contract maturities. We use the December contract for

corn and the November contract for soybeans to represent the new crop futures series.

The proprietary firm-level forecast dataset includes companies that participate in polls
conducted by news wire agencies and provide forecasts for crop production, crop yield, planted
acreage, and stocks for corn, soybean, and wheat varieties.* Because of the importance of being
the first production estimates for corn and soybeans, as well as data availability, we focus on the
August Crop Production report. Following Karali, Isengildina-Massa, and Irwin (2025), we take

the production figures in the August report as the actual values firms try to forecast.’

Our sample of industry forecasts for the upcoming August Crop Production report covers
1992 to0 2021.% The dataset is an unbalanced panel, with some companies disappearing from the
sample in the early 2000s (the earliest in 2002) and some entering the sample late (the latest in

2012). We exclude the firms without forecasts after 2010 to avoid using a panel dataset in which

4 Wire news services, such as Bloomberg and Reuters, poll advising companies, commodity market experts, and
market analysts for their expectations regarding the upcoming USDA reports. These are also known as trade
estimates. While the poll results are available to Bloomberg subscribers, to the best of our knowledge, they only go
back to 2010. In contrast, our private source has been compiling industry polls from various sources since the late
1980s, providing us with a unique opportunity to leverage industry forecasts that extend further back into the past.

5 As discussed in Karali, Isengildina-Massa, and Irwin (2025), Bloomberg has started releasing two sets of forecasts
in recent years. One set includes analysts’ expectations of USDA figures in the upcoming reports, and the other
contains analysts’ forecasts for the unobservable actual value. However, these two sets of forecasts are not available
for each report, and for a given report, such as Grain Stocks, their availability varies by the report month. Since our
proprietary data set includes only one forecast for each firm without indicating to which forecast it refers, we assume
that the firms in our dataset forecast the crop production figures in August reports.

¢ Even though the industry forecast dataset begins in 1989, the number of firms providing forecasts is sparse before
1992, constraining the start of our sample period. Some companies disappear from the dataset in the early 2000s
(the earliest in 2002), while others enter the dataset relatively late (the latest in 2012).
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some firms do not overlap with others or have only one common time period. From the
remaining sample, we exclude firms with fewer than ten observations between 1992 and 2021,
resulting in an unbalanced panel of 24 firms. The number of firms per year ranges from nine to

24, with an average of 15.3 firms over the 30-year period.

Figure 1 displays the empirical probability distributions (i.e., kernel) of forecast errors
(i.e., surprises) and absolute forecast errors (i.e., absolute surprises) relative to a normal
distribution. Soybean forecast errors are distributed relatively widely, indicating larger standard
deviations. Figure 2 presents the distributions of forecast errors and absolute forecast errors for
each year across firms that provided a forecast. The horizontal lines in each box represent the
median, and the dots represent the “outliers.” For corn, the median absolute forecast error is

lowest in 2001 and highest in 2019, and for soybeans, it is lowest in 2001 and highest in 2015.
Empirical Results
Anchoring bias

We assign four different measures for the anchor when estimating equation (1), following Karali,
Isengildina-Massa, and Irwin (2025). The first anchoring variable is the final production of the
previous crop year published in the USDA’s January CPAS report, Anchor 1, =

Final Production;_;. To account for the adjustment made by the forecasters to smooth out the

fluctuations in production across years, we take the second anchoring variable as the average of
. . 1 . .
the final production values in the last three years, Anchor 2, = §2?=1 Final Production;_;.

While the previous year’s final production can be considered as the latest information the
forecasters have about the upcoming crop year’s production, some firms might think there is a

pattern in USDA’s estimates for the first production figures for the crop year and therefore use



the actual value in the previous year’s August Crop Production report as a starting point.
Accordingly, we take the third anchoring variable as Anchor 3; = Actual;_,, and the fourth

anchoring variable is the average of the actual values in the last three periods to smooth out the

. . 1
fluctuations over time, Anchor 4, = ;ZleActualt_ j-

The regression results are presented in table 1 for corn and in table 2 for soybeans.” As
indicated in the previous study of Karali, Isengildina-Massa, and Irwin (2025), corn forecasts
exhibit reverse anchoring, evidenced by the negative coefficient estimates across all
specifications. Thus, firms make adjustments in the opposite direction of their initial starting
value (i.e., anchor). The model with the lowest Akaike information criteria (AIC) and Bayesian
information criteria (BIC) is indicated with the darker shade, and the model with the second
lowest AIC and BIC is indicated with the lighter shade. It appears that the models with an

anchoring variable created with smoothing fit the data better.

For soybeans, coefficient estimates are positive across all specifications, but are
statistically significant only in models with smoothed anchoring variables. Thus, soybean
forecasts exhibit anchoring bias, where firms base their current forecasts on a reference value
(smoothed production values over the last three years) and make sufficient adjustments. Similar
to corn, the model with the anchoring variable set to the average August production over the last
three years has the smallest AIC and BIC, while the model with the average of the previous three

years’ final production as the anchoring variable has the second smallest AIC and BIC.

" These results replicate tables 12 and 13 in Karali, Isengildina-Massa, and Irwin (2025), with slight differences in
the corn results arising from our correction of two data points misrepresenting the actual USDA figure in 1997 and
2016.



Price reaction tests with anchoring bias

The statistical evidence of anchoring and reverse anchoring bias suggests that forecast errors
(i.e., market surprises) are partly predictable. If markets are informationally efficient, prices
should not react to the predicted component of the surprise. The price reaction test results from
equation (3) are presented in table 3 for corn and in table 4 for soybeans. For comparison
purposes, column (1) of these tables presents the results obtained from the ordinary least squares
(OLS) regression of futures price changes on the surprise variable taken as the median of firm-
level surprises within a year. Column (2) of both tables uses firm-level surprises in a panel
regression with firm fixed effects. Columns (3) and (3') decompose the surprise measure into
expected and unexpected components by using the predicted residuals from the anchoring
regression with the lowest AIC and BIC (columns (4) in table 1 and 2 for corn and soybeans,
respectively). Similarly, columns (4) and (4") decompose the surprise measure by using the
predicted residuals from the anchoring regression with the second-lowest AIC and BIC (columns

(2) in tables 1 and 2).

The difference between (3) and (3'), and between (4) and (4'), stems from how the
anchoring regression is estimated. In columns (3) and (4), the anchoring regression equation is
estimated using the entire sample, thereby making the decomposition of the surprise ex-post. To
account for the latest information about the anchoring bias in industry forecasts, we estimate the
anchoring regression using a 10-year rolling window. Specifically, starting from 2002, we use
the previous 10 years of data (1992-2001) to estimate equation (1) and calculate the predicted
forecast errors and predicted residuals, which represent, respectively, the expected and
unexpected components of the surprise in 2002. We repeat this process for each year from 2002

to 2021 to create a series of decomposed surprise measures. Columns (3') and (4') present the



results obtained with ex-ante decomposed surprise measures. Recall that we estimate models (3)
and (4') using the GMM approach outlined in Campbell and Sharpe (2009), which accounts for

the increased sampling variability resulting from the generated regressors. For these models, we
also test whether prices react to expected and unexpected surprises symmetrically (Campbell and

Sharpe 2009).

For corn, the surprise coefficient estimates are negative across all models in table 3,
suggesting that positive supply surprises (i.e., higher-than-expected production) lower futures
prices, and negative supply surprises (i.e., lower-than-expected production) put upward pressure
on prices. We find that prices react to both predicted and unpredicted surprise components, even
after decomposing the surprise measure ex-ante. These results suggest that financial market
participants are either unaware of or fail to account for the anchoring bias in corn production
forecasts, implying an informationally inefficient market. The symmetric price reaction to both
predicted and unexpected surprises is rejected, except for the model with ex-ante decomposed
surprises (column (3')). When the symmetry is rejected, the magnitude of price reaction to the

true surprise is about half of that to the predicted surprise.

The surprise coefficient estimates for soybeans in table 4 are negative when statistically
significant, aligning with our expectations. We find that once we account for the latest
information set that market participants could use to adjust for the anchoring bias (i.e., using ex-
ante decomposed surprises), prices only react to the true surprise. The coefficient estimate for
the predicted surprise is statistically insignificant in both (3') and (4'). These findings reveal that
market participants are aware of and account for the anchoring bias in industry forecasts of

soybean production, implying an informationally efficient market.
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Volatility reaction tests with attribution bias

We estimate the models in Karali, Isengildina-Massa, and Irwin (2025) to determine the factors
affecting forecast inaccuracy (appendix tables A.1 for corn and A.2 for soybeans). Like the
anchoring bias, we select the two models with the lowest AIC and BIC for volatility reaction

tests and present the results in appendix tables A.3 and A.4 for corn and soybeans, respectively.®

For corn, we find that volatility reacts to both predicted and unpredicted absolute surprise
components when the decomposition is performed ex post. However, once we account for the
latest information set that market participants could use to adjust for the attribution bias, we find
that volatility only reacts to the unpredicted absolute surprise obtained from the forecast
inaccuracy model with the lowest AIC and BIC. For soybeans, though, volatility response to the
predicted absolute surprises, both ex-post and ex-ante, is statistically significant. These findings
are opposite to the case with anchoring bias and suggest that while the corn futures market is
informationally efficient, the soybean futures market exhibits informational inefficiency in the

sense of attribution bias.
Which surprise measure better explains price reaction?

The findings presented in this study demonstrate that the chosen surprise variable, especially
when there is any form of bias in market forecasts, affects the measurement of price reactions,

thereby influencing the indirect welfare effects of public information. Furthermore, the median

8 For comparison purposes, we show in column (1) of both tables the results obtained from the ordinary least squares
(OLS) regression of volatility (i.e., absolute futures price changes) on the absolute surprise variable taken as the
median of firm-level absolute surprises within a year. Column (2) of both tables uses firm-level absolute surprises
in a panel regression with firm fixed effects. Columns (3) and (4) decompose the absolute surprise measure into
expected and unexpected components by using the predicted absolute residuals from the inaccuracy regression with
the two lowest AIC and BIC (columns (1) and (2) in table A.1 for corn, and columns (6) and (2) in table A.2 for
soybeans). Columns (3') and (4') present the results obtained with ex-ante decomposed absolute surprise measures
in the GMM framework of Campbell and Sharpe (2009).
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of industry expectations, typically used to calculate market surprise, ignores the dispersion
among analysts’ forecasts that may help explain market reaction (Fernandez-Perez et al. 2019).
We propose several alternative measures of market surprise that include variability and biases in
firm-level forecasts and assess which surprise measure better explains the variation in prices

around USDA report releases.
In the simplest form, we use the median of industry forecasts rather than firm-level
forecasts while creating the surprise variable (i.e., forecast error) for each year, SURP; =

Actuals—median(Forecast; . . . .
100 x L Actual( ) We then normalize this surprise measure with (a) the standard
t

deviation of firm-level forecasts within a year, (b) the standard deviation of the median surprise
across the sample period, (c) the median absolute deviation (MAD) of firm-level forecasts from

the consensus, which is taken as the median of forecasts across all firms within a year: MAD, =

Forecastis—median(Forecast;;)

median [|100 X

]; and (d) the interquartile range (IQR), the

median(Forecastis)

difference between the third and first quartile, of firm-level forecasts divided by the median

Forecast;t) Forecast;t)

forecast: IQR, = Q3 (100 x medmn(mecastit)) ~01 (100 x median(Forecastit))' Similar to
Fernandez-Perez et al. (2019), we further run regressions with the surprise measure, MAD, and
their interaction, as well as regressions with the surprise measure, IQR, and their interaction.
The adjusted R-squared values from these regressions estimated via OLS are presented in
column (1) of table 5. Column (2) repeats the same analysis by using the firm-level surprises in
a panel regression framework. Finally, columns (3) and (4) utilize the firm-level ex-ante
decomposed surprises obtained from the anchoring bias models with the minimum and the

second-smallest AIC and BIC (corresponding to columns (3') and (4') in tables 3-4). We indicate

the models with the largest adjusted R-squared values in bold font in table 5.
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For corn, the OLS regression with the surprise variable, created using the median of all
firm-level forecasts, and the interquartile range of firm-level forecasts yields the largest
explanatory power of price changes around the USDA’s August Crop Production report releases,
with an adjusted R-squared value of 48%. When compared to the other rows in column (1), it is
seen that the largest gain in explanatory power is achieved against the model with the median
surprise standardized by the IQR. The smallest gain is over the model with the median surprise
and MAD (adjusted R-squared value of 46.6%). The models using the surprises decomposed
using the anchoring regression results do not offer higher explanatory power. This might not be
surprising, as we demonstrated in table 3 that financial market participants are either unaware of
the anchoring bias or fail to account for it in their trading decisions. Among the panel regression
models presented in columns (2)-(4), the largest adjusted R-squared is obtained with the model

that uses firm-level surprises, IQR, and their interaction.

For soybeans, we find that the model with the decomposed surprises (obtained from the
anchoring regression with the second-smallest AIC and BIC), MAD, and their interaction yields
the largest explanatory power, with an adjusted R-squared value of 38.6%. While the
explanatory power is not substantially different, and sometimes lower, relative to the models in
column (3) with decomposed surprises obtained from a different anchoring regression, there is
significant improvement over the models using the median surprise presented in column (1).
This is not surprising, as we showed in table 4 that financial market participants are aware of the
anchoring bias in the industry’s soybean production forecasts and make adjustments in their
trading decisions. Among the OLS regression models presented in column (1), the largest
adjusted R-squared value is obtained with the model that uses the median surprise standardized

by the IQR.
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Conclusions

Market surprises—differences between USDA crop production estimates and industry
forecasts—are widely used to evaluate the impact of USDA reports. While researchers often
rely on the median of individual forecasts to represent market expectations, this approach
overlooks both the heterogeneity among forecasters and the presence of cognitive biases.
Forecast dispersion, for instance, has been shown to influence bid-ask spreads in commodity
futures markets during report releases (Fernandez-Perez et al. 2019), suggesting that forecaster
diversity carries meaningful information. Moreover, studies such as Karali, [rwin, and
Isengildina-Massa (2020) demonstrate that median-based surprises can suffer from attenuation
bias, leading to understated price reactions. More recent findings also document cognitive
biases—such as anchoring and attribution—in crop production forecasts (Karali, Isengildina-
Massa, and Irwin 2025), making parts of the market surprise predictable and potentially

exploitable, with implications for market efficiency and welfare analysis.

In this study, we examine the informational efficiency of futures markets by testing
whether prices and volatility respond to the predictable component of USDA news driven by
anchoring and attribution biases. We find that market participants fail to correct for the reverse
anchoring bias in corn forecasts, as evidenced by significant price reactions to the predicted
component of the surprise. In contrast, soybean markets appear to adjust for anchoring bias, with
prices reacting only to the unpredicted—or true—surprise. These results indicate informational
inefficiency in corn futures but efficiency in soybean futures regarding anchoring bias. For
attribution bias, the pattern reverses: corn volatility responds only to the unpredicted component,
suggesting bias awareness, while soybean volatility reacts to both predicted and unpredicted

components, indicating a failure to account for attribution bias.
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We further explore which specification of the market surprise measure best captures price
variation on days of USDA report releases. Our analysis shows that incorporating the dispersion
of firm-level forecasts, such as the interquartile range or median absolute deviation, improves
model fit, even when the surprise itself is calculated using the median forecast rather than firm-
level data. This suggests that forecast dispersion captures important dimensions of uncertainty
and disagreement among forecasters, both of which play a critical role in shaping market
reactions. These findings underscore the importance of accounting for heterogeneity among
forecasters when assessing the price effects of USDA reports and contribute to a more nuanced

understanding of how information is processed in futures markets.
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Table 1. Anchoring Bias, Corn

(1) (2) (3) 4)
Forecast Forecast Forecast Forecast
Error Error Error Error
Deviation from
Anchor 1 -0.078***
(0.008)
Anchor 2 -0.158***
(0.015)
Anchor 3 -0.096***
(0.009)
Anchor 4 -0.137%**
(0.019)
Constant 0.898*** 1.347*** 0.876%** 1.240%***
(0.025) (0.060) (0.019) (0.067)
Firm effects Yes Yes Yes Yes
Observations 459 427 443 410
No. of groups 24 24 24 24
Loglikelihood -1,046.195 -949.428 -1,013.202 -940.089
AIC 2,094.391 1,900.856 2,028.403 1,882.178
BIC 2,098.520 1,904.913 2,032.497 1,886.195

Notes: Estimation results of equation (1) with different anchoring measures are presented.
Robust standard errors are in parentheses. Forecast error is defined in percentage terms as FEi =
100x[(Actual; — Forecasti) / Actual;] and deviation from anchor in percentage terms as
100x[(Forecastii — Anchort) / Anchor¢]. Anchor 1¢= Final Production.i; Anchor 2;= (Final
Productiont.;+Final Production:»+Final Production3)/3; Anchor 3= Actual:.i; Anchor 4=
(Actual.1+Actualio+Actuali3)/3. Constant refers to the average of firm fixed effects. AIC refers
to Akaike information criteria, and BIC is Bayesian information criteria. The dark (light) gray
shaded column represents the model with the (second) smallest AIC and BIC. The asterisks, ***,
** and *, represent statistical significance at the 1%, 5%, and 10%, respectively.
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Table 2. Anchoring Bias, Soybeans

(1 (2) 3) 4)
Forecast Forecast Forecast Forecast
Error Error Error Error
Deviation from
Anchor 1 -0.078***
(0.008)
Anchor 2 -0.158%**
(0.015)
Anchor 3 -0.096***
(0.009)
Anchor 4 -0.137%**
(0.019)
Constant 0.898*** 1.347*** 0.876%** 1.240%**
(0.025) (0.060) (0.019) (0.067)
Firm effects Yes Yes Yes Yes
Observations 459 427 443 410
No. of groups 24 24 24 24
Loglikelihood -1,046.195 -949.428 -1,013.202 -940.089
AIC 2,094.391 1,900.856 2,028.403 1,882.178
BIC 2,098.520 1,904.913 2,032.497 1,886.195

Notes: Estimation results of equation (1) with different anchoring measures are presented.
Robust standard errors are in parentheses. Forecast error is defined in percentage terms as FEi =
100x[(Actual; — Forecasti) / Actual;] and deviation from anchor in percentage terms as
100x[(Forecastii — Anchort) / Anchor¢]. Anchor 1¢= Final Production.i; Anchor 2;= (Final
Productiont.;+Final Production:»+Final Production3)/3; Anchor 3= Actual:.i; Anchor 4=
(Actual.1+Actualio+Actuali3)/3. Constant refers to the average of firm fixed effects. AIC refers
to Akaike information criteria, and BIC is Bayesian information criteria. The dark (light) gray
shaded column represents the model with the (second) smallest AIC and BIC. The asterisks, ***,
** and *, represent statistical significance at the 1%, 5%, and 10%, respectively.
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Table 3. Price Reaction Tests with Anchoring Bias, Corn

(1) () 3) 3" “4) 4"
Ex-post Ex-ante Ex-post Ex-ante
[Table 1(4)] [Table 1(4)] [Table 1(2)] [Table 1(2)]
Futures Futures Futures Futures Futures Futures
Return Return Return Return Return Return
Median Surprise -0.999%**
(0.202)
Observed Surprise -0.725%**
(0.041)
Predicted Surprise -1.051%** -0.874%** -1.095%** -1.294%*x*
(0.101) (0.133) (0.081) (0.119)
Unpredicted Surprise -0.655%** -0.683%** -0.583%*%*x* -0.590%**
(0.061) (0.067) (0.063) (0.072)
Constant 0.316 0.178*** 0.543%** 0.338** 0.529%** 0.455%**
(0.429) (0.027) (0.127) (0.156) (0.113) (0.144)
Symmetric Price Reaction (x?) 10.76%** 1.80 23.80%** 22.23%**
[0.00] [0.18] [0.00] [0.00]
Observations 30 459 410 335 427 342
No. of groups 24
Firm effects Yes

Notes: Estimation results of equation (3) are presented with robust standard errors in parentheses. Observed surprise (i.e., forecast error) is defined
in percentage terms as SURP; = 100x[(Actual; — Forecasti;) / Actual(], where Forecasti; is the forecast made by firm i. Median surprise is the
median of surprises across firms within a year, defined as MED(SURP;) = median(SURP;). Predicted and unpredicted surprises are, respectively,
the predicted dependent variables and predicted residuals from model (4) in table 1 with the minimum AIC and BIC and from model (2) with the
second smallest AIC and BIC. To account for the increased sampling variability induced by using generated regressors, models (3)-(4') are
estimated via the generalized method of moments (GMM). Symmetric price reaction (Chi-squared test, with p-values in brackets) tests the equality
of the coefficient estimates for predicted and unpredicted surprises. The asterisks, ***, ** and *, represent statistical significance at the 1%, 5%,

and 10%, respectively.
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Table 4. Price Reaction Tests with Anchoring Bias, Soybeans

(1) (2) 3) 3" “4) 4)
Ex-post Ex-ante Ex-post Ex-ante
[Table 2(4)] [Table 2(4)] [Table2(2)] [Table 2(2)]
Futures Futures Futures Futures Futures Futures
Return Return Return Return Return Return
Median Surprise -0.555%**
(0.189)
Observed Surprise -0.428%**
(0.039)
Predicted Surprise -0.751%*%x* 0.146 -0.282%* 0.131
(0.134) (0.128) (0.163) (0.130)
Unpredicted Surprise -0.415%#* -0.503%#* -0.443%#* -0.486%**
(0.044) (0.042) (0.043) (0.041)
Constant 0.160 -0.074%** 0.065 0.001 -0.088 -0.141
(0.462) (0.017) (0.129) (0.126) (0.126) (0.123)
Symmetric Price Reaction (x%) 6.36%** 29.43%% 0.91 29.4]%%*
[0.01] [0.00] [0.34] [0.00]
Observations 30 459 410 335 427 342
No. of groups 24
Firm effects Yes

Notes: Estimation results of equation (3) are presented with robust standard errors in parentheses. Observed surprise (i.e., forecast error) is defined
in percentage terms as SURP; = 100x[(Actual; — Forecasti;) / Actual(], where Forecasti; is the forecast made by firm i. Median surprise is the
median of surprises across firms within a year, defined as MED(SURP;) = median(SURP;). Predicted and unpredicted surprises are, respectively,
the predicted dependent variables and predicted residuals from model (4) in table 2 with the minimum AIC and BIC and from model (2) with the
second smallest AIC and BIC. To account for the increased sampling variability induced by using generated regressors, models (3)-(4') are
estimated via the generalized method of moments (GMM). Symmetric price reaction (Chi-squared test, with p-values in brackets) tests the equality
of the coefficient estimates for predicted and unpredicted surprises. The asterisks, ***, ** and *, represent statistical significance at the 1%, 5%,
and 10%, respectively.
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Table 5. Explanatory Power of Surprise Measures

(1) (2) 3) “4)
Ex-ante Ex-ante
[Table 3(3")] [Table 3(4")]
Dep. var.: Futures Return . Firm- Firm-level Firm-level
Median level Decomposed  Decomposed
Corn
Surprise 0.426 0.351 0.317 0.354
Surprise + Std. Dev. (Forecasts) 0.350 0.313 0.296 0.315
Surprise + Std. Dev. (Surprise) 0.426 0.351 0.296 0.315
Surprise + MAD 0.329 0.269 0.195 0.227
Surprise + IQR 0.266 0.205 0.137 0.158
Surprise, MAD 0.466 0.375 0.345 0.362
Surprise, MAD, Surprise x MAD 0.446 0.398 0.345 0.362
Surprise, IQR 0.480 0.402 0.381 0.386
Surprise, IQR, Surprise x IQR 0.460 0.423 0.381 0.386
Soybeans
Surprise 0.221 0.214 0.376 0.380
Surprise + Std. Dev. (Forecasts) 0.222 0.212 0.374 0.371
Surprise + Std. Dev. (Surprise) 0.221 0.214 0.374 0.371
Surprise + MAD 0.157 0.069 0.333 0.327
Surprise + IQR 0.232 0.216 0.360 0.344
Surprise, MAD 0.215 0.219 0.383 0.386
Surprise, MAD, Surprise x MAD 0.185 0.217 0.383 0.386
Surprise, IQR 0.192 0.212 0.374 0.378
Surprise, IQR, Surprise x IQR 0.194 0.227 0.374 0.378

Notes: The table presents adjusted R-squared values from the regression of daily futures returns
calculated as AP, = 100 X (In P, — In P,_,), where P, is the price of the new crop futures
contract, on various surprise measures. MAD refers to the median absolute deviation, and IQR
refers to the interquartile range. The dark and light gray shaded column uses the predicted and
unpredicted surprises obtained from model (4) in tables 1 and 2 with the minimum AIC and BIC
and from model (2) with the second smallest AIC and BIC, respectively. The maximum adjusted
R-squared values across the models for each commodity are indicated with a bold font.
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Figure 1. Empirical probability distributions of forecast errors

Notes: Forecast error is defined in percentage terms as FEj; = 100%[(Actual; — Forecasti;) / Actual;], and absolute forecast error is
defined as |FE;| = [100%[(Actual; — Forecasti;) / Actual]|.
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Figure 2. Forecast errors across firms over time

100x[(Actual; — Forecasti) /

Actual], and absolute forecast error is defined as [FE;| = |100x[(Actual; — Forecastit) /

Actual]|.
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Appendix: Attribution Bias and Volatility Reaction Tests

In this appendix, we explain the empirical models used to verify the existence of attribution bias
based on the econometric framework in Karali, Isengildina-Massa, and Irwin (2025). After
selecting the two models with the lowest Akaike information criteria (AIC) and Bayesian
information criteria (BIC), we perform volatility reaction tests to the predicted component of the

surprise induced by cognitive biases.

Attribution bias is defined as overconfidence in analysts’ own forecasting skills resulting
from having success in previous periods, making them deviate more from the consensus, which
is taken as the median of others’ forecasts (Hong, Kubik, and Solomon 2000; Hilary and Menzly
2006). Karali, Isengildina-Massa, and Irwin (2025) investigated the existence of an attribution
bias using two different approaches. In one approach, they model the absolute value of forecast
deviations from the consensus, and in the other, they model the absolute value of forecast errors.
Since the absolute value of forecast errors corresponds to the absolute value of market surprises,
the topic of interest in our study, we estimate the following regression equation that incorporates

both firm and year fixed effects:
(A1) |FEy| = m; + v + ¢|FE;_1| + B Boldness Score;, + § Experience;, + A Freq;; + €;;.

The dependent variable, |FE;;|, is the absolute value of the forecast error defined as FE;; =

(Actuals—Forecasti)

100 x

ctual , where Actual, is the actual value in year ¢ and Forecast;; is the
t

forecast made by firm 7 in year 7 (see equation (2) in the paper). The parameters m; and y,
represent the firm and time effects, respectively. A bold forecast is defined as one that

significantly deviates from the consensus, where consensus is taken as the median (or mean) of
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the other analysts’ forecasts. We calculate the boldness score of each firm following Hong,

Kubik, and Solomon (2000) as:

Rank;; — 1
Number of firms; — 1

(A.2) Score;; =100 — ( ) x 100.

We assign Rank;; to each firm for each year separately by ranking the absolute forecast
deviation, |[FDEV;|, from the largest to the smallest value, with the absolute forecast deviation in

percentage terms is calculated as:

(A.3) |FDEV,| = [100 x (Forecast;, — Forecast_; )
) itl = .

Forecast_;;

The variable Forecast_;; is the median of the forecasts made by other firms (excluding firm 7)
in year ¢, which implicitly assumes that each firm has perfect knowledge about the forecasts
made by other firms. With this setup, the firm with the largest deviation in magnitude takes the
rank of one since a larger forecast deviation from the consensus indicates more boldness; the
firm with the second-largest forecast deviation has the rank of two, and so on. In the case of
equal absolute forecast deviations for two or more firms, we use the mid-point of the rank for
those firms; therefore, the boldness rank is not necessarily an integer. As a result, the firm with
the largest forecast deviation receives a score of 100, while the firm with the smallest forecast
deviation receives a score of zero. The median score in each year is 50 by construction. As in
Karali, Isengildina-Massa, and Irwin (2005), we proxy a firm’s experience by the running total
of years the company provides forecasts, with the experience variable taking the value of one in
the first year the company provides a forecast, and increasing by one in the year when that
company makes a forecast. We create the variable Freq;; to serve as a proxy for the frequency

of superior forecasts, following Karali, Isengildina-Massa, and Irwin (2025), who used a similar
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approach to Hilary and Menzly (2006). Specifically, we count the number of times a firm’s
absolute forecast error was below the median of other firms’ forecast errors (i.e., superior
forecast) in the last three periods, Freq;; = Count(|FEl-,t_j| < |FE_l-,t_j|), j=1,23"°
Positive parameter estimates would indicate that forecast errors increase in magnitude with

previous forecast errors, boldness, experience, and prior success.

Similar to the case with anchoring bias, the finding of statistically significant slope
estimates in equation (A.1) suggests that the absolute forecast error, which is equivalent to the
absolute market surprise, is partly predictable. Thus, we can decompose the absolute surprise
measure into expected and unexpected components, where the expected component is simply the
predicted dependent variable from equation (A.1.), |F"Ti'it|, and the unexpected component is the
predicted residuals, |é;;| = |FE;:| — |17E"L-t | We can then test for volatility reactions by estimating

the following regression equation:
(A4 4P| = 6; + wllﬁEitl + P, €] + vy,

where |AP;;| =100 X (In P, — In P,_,)| is the absolute value of continuously compounded
daily return on the commodity futures contract with price P;, which is a commonly-used
volatility measure in the literature, and it is the same for all firms (|4AP;;| = |4AP;|, Vi). If the

markets are informationally efficient, then 1, = 0, indicating that market participants are aware

 We estimate equation (A.1) using different regressors, which are presented in table A.1. The accuracy score is
calculated using equation (A.2), where we assign Rank;, for each year separately by ranking the absolute forecast
error, |FE;;|, from the smallest to the largest value. Accordingly, the firm with the smallest forecast error receives
the rank of one, the firm with the second-smallest forecast error receives the rank of two, and so on. When forecast
errors are equal for two or more firms, we use the mid-point of the rank; therefore, the accuracy rank is not
necessarily an integer. As a result, the accuracy score of the firm with the smallest forecast error is 100, and that of
the firm with the largest forecast error is zero. By definition, the median score in each year is 50. We also create
indicator variables for the accuracy and boldness scores and ranks for being in the top 5% percentile and the bottom
5t percentile of their respective distribution.
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of the attribution bias in industry forecasts and, therefore, volatility does not respond to the
anticipated surprise component. We estimate equation (A.4) using the GMM method in
Campbell and Sharpe (2009) to account for the increased sampling variability introduced by

using generated regressors.
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Table A.1. Determinants of Forecast Inaccuracy, Corn

(D (2) (3) “4) (5) (6)
Absolute Absolute Absolute Absolute Absolute Absolute
Forecast Forecast Forecast Forecast Forecast Forecast
Error Error Error Error Error Error
Prior Absolute -0.166*** -0.165%**
Forecast Error (0.041) (0.050)
Prior Accuracy 0.007**
Score (0.003)
Boldness Score 0.012%** 0.012%**
(0.003) (0.003)
Prior Accuracy -0.040**
Rank (0.016)
Boldness Rank -0.058%%*
(0.018)
Prior Top 5% 0.555%** 0.536%**
Accuracy Score (0.185) (0.176)
Prior Bottom 5% -0.095
Accuracy Score (0.240)
Top 5% 1.172%* 1.144%* 1.090%*
Boldness Score (0.461) (0.458) (0.463)
Bottom 5% -0.312%*
Boldness Score (0.177)
Experience 0.078%* 0.093%** 0.069* 0.074%* 0.081%** 0.080%*
(0.042) (0.044) (0.039) (0.040) (0.040) (0.040)
Prior Success 0.119 0.145%* 0.094 0.110 0.210%** 0.208***
Frequency (0.074) (0.085) (0.091) (0.091) (0.076) (0.074)
Constant 2.307%** 2.781%** 1.777%** 3.233%** 2.407%** 2.459%**
(0.497) (0.479) (0.492) (0.478) (0.466) (0.450)
Firm effects Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes
Observations 316 316 316 316 316 316
No. of groups 24 24 24 24 24 24
Loglikelihood -473.653 -477.529 -477.258 -477.100 -479.065 -477.964
AIC 993.305 1,001.057 994,515 1,000.200 1,004.129 1,001.929
BIC 1,079.687 1,087.439 1,080.897 1,086.583 1,090.511 1,088.311

Notes: Estimation results of equation (A.1) are presented along with alternative control variables. Robust standard errors are in
parentheses. Forecast error is defined in percentage terms as FEit = 100x[(Actual; — Forecastit) / Actuali], and forecast deviation
in percentage terms as FDEVit = 100x[(Forecastit — Forecast.it) / Forecast.i], where Forecast.i; is the median of the forecasts
made by other firms. Accuracy and boldness scores are calculated as Scoreir = 100 — [(Ranki—1) / (Number of firms—1)]x100,
where Ranki is assigned for the accuracy score by ranking the absolute forecast error from the smallest to the largest value, with
the smallest forecast error having the rank of one, and for the boldness score by ranking the absolute forecast deviation from the
largest to the smallest value, with the largest forecast deviation having the rank of one. Experience is the running total of years
firms provided a forecast and prior success frequency is the number of times a firm’s absolute forecast error was below the
median of other firms’ forecasts errors in the last three periods, calculated as Freqit = Count (|FEij| < [FE-i4|), j=1, 2, 3. Other
variables are indicator variables for forecasts being in the specified percentile of the accuracy or boldness score distributions.
Constant refers to the average of firm fixed effects. AIC refers to Akaike information criteria and BIC is Bayesian information
criteria. The dark (light) gray shaded column represents the model with the (second) smallest AIC and BIC. The asterisks, ***,
** and *, represent statistical significance at the 1%, 5%, and 10%, respectively.
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Table A.2. Determinants of Forecast Inaccuracy, Soybeans

(D 2 (3) 4) (5) (6)
Absolute Absolute Absolute Absolute Absolute Absolute
Forecast Forecast Forecast Forecast Forecast Forecast
Error Error Error Error Error Error
Prior Absolute -0.042 -0.040
Forecast Error (0.050) (0.047)
Prior Accuracy 0.003
Score (0.003)
Boldness Score 0.014%** 0.014%**
(0.003) (0.003)
Prior Accuracy -0.022
Rank (0.018)
Boldness Rank -0.074%**
(0.016)
Prior Top 5% 0.081 0.068
Accuracy Score (0.312) (0.307)
Prior Bottom 5% -0.061
Accuracy Score (0.275)
Top 5% 1.617*** 1.617%** 1.577%**
Boldness Score (0.465) (0.468) (0.487)
Bottom 5% -0.340%*
Boldness Score (0.188)
Experience -0.077 -0.100 -0.075 -0.084 -0.096 -0.093
(0.084) (0.080) (0.085) (0.084) (0.080) (0.082)
Prior Success 0.127 0.134 0.093 0.080 0.161** 0.144
Frequency (0.088) (0.088) (0.089) (0.091) (0.079) (0.093)
Constant 2.448%** 2.975%** 2.253%** 3 6R8*** 2.858%** 2.931%**
(0.814) (0.781) (0.743) (0.651) (0.703) (0.757)
Firm effects Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes
Observations 316 316 316 316 316 316
No. of groups 24 24 24 24 24 24
Loglikelihood -507.874 -506.912 -507.304 -509.602 -507.093 -506.172
AIC 1,061.747  1,059.825 1,060.607  1,065.204 1,060.186 1,058.344
BIC 1,148.129  1,146.207 1,146.989  1,151.586 1,146.568 1,144.726

Notes: Estimation results of equation (A.1) are presented along with alternative control variables. Robust standard
errors are in parentheses. Forecast error is defined in percentage terms as FE;; = 100x[(Actual; — Forecasti;) /
Actual], and forecast deviation in percentage terms as FDEV;; = 100x[(Forecast;; — Forecast.i;) / Forecast.i], where
Forecast.i; is the median of the forecasts made by other firms. Accuracy and boldness scores are calculated as Scorei
=100 — [(Rank;—1) / (Number of firms—1)]x100, where Rank;; is assigned for the accuracy score by ranking the
absolute forecast error from the smallest to the largest value, with the smallest forecast error having the rank of one,
and for the boldness score by ranking the absolute forecast deviation from the largest to the smallest value, with the
largest forecast deviation having the rank of one. Experience is the running total of years firms provided a forecast
and prior success frequency is the number of times a firm’s absolute forecast error was below the median of other
firms’ forecasts errors in the last three periods, calculated as Freq; = Count (|FEij| < |FE.i ), j=1, 2, 3. Other
variables are indicator variables for forecasts being in the specified percentile of the accuracy or boldness score
distributions. Constant refers to the average of firm fixed effects. AIC refers to Akaike information criteria and BIC
is Bayesian information criteria. The dark (light) gray shaded column represents the model with the (second)
smallest AIC and BIC. The asterisks, ***, ** and *, represent statistical significance at the 1%, 5%, and 10%,
respectively.

32



Table A.3. Volatility Reaction Tests with Attribution Bias, Corn

(1 2) 3) 3 “ )
Ex-post Ex-ante Ex-post Ex-ante
[Table A.1(1)] [Table A.1(1)] [Table A.1(3)] [Table A.1(3)]
Volatility  Volatility Volatility Volatility Volatility Volatility
Median Absolute 0.773%%*
Surprise (0.244)
Observed Absolute 0.415%**
Surprise (0.043)
Predicted Absolute 0.666*** 0.097 0.677*** -0.136%*
Surprise (0.053) (0.130) (0.053) (0.075)
Unpredicted Absolute 0.008 0.484*** 0.010 0.114*
Surprise (0.095) (0.070) (0.098) (0.067)
Constant 0.988* 1.748%%** 1.284%** 1.948%%** 1.264%** 2.947***
(0.546) (0.093) (0.131) (0.278) (0.127) (0.149)
Symmetric Volatility 26.14%*** 5.94%%* 25.74%*** 3.14*
Reaction (x°) [0.00] [0.01] [0.00] [0.08]
Observations 30 459 316 260 316 260
No. of groups 24
Firm effects Yes

Notes: Estimation results of equation (A.4) are presented with robust standard errors in parentheses. Observed absolute surprise (i.e.,
absolute forecast error) is defined in percentage terms as [SURP;| = | 100 X [(Actual; — Forecasti;) / Actual¢] |, where Forecast;; is the
forecast made by firm i. Median absolute surprise is the median of absolute surprises across firms within a year, defined as
MED(|SURP{|) = median( [SURPj ). Predicted and unpredicted absolute surprises are, respectively, the predicted dependent variables
and predicted residuals from model (1) in table A.1 with the minimum AIC and BIC and from model (3) with the second smallest AIC
and BIC. To account for the increased sampling variability induced by using generated regressors, models (3)-(4") are estimated via
the generalized method of moments (GMM). Symmetric volatility reaction (Chi-squared test, with p-values in brackets) tests the
equality of the coefficient estimates for predicted and unpredicted absolute surprises. The asterisks, ***, ** and *, represent statistical
significance at the 1%, 5%, and 10%, respectively.
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Table A.4. Volatility Reaction Tests with Attribution Bias, Soybeans

(1 2) 3) 3 “ )
Ex-post Ex-ante Ex-post Ex-ante
[Table A.2(6)] [Table A.2(6)] [Table A.2(3)] [Table A.2(3)]
Volatility  Volatility Volatility Volatility Volatility Volatility
Median Absolute 0.671%*
Surprise (0.278)
Observed Absolute 0.354 %%
Surprise (0.051)
Predicted Absolute 0.602%** -0.145%** 0.579%** -0.158%***
Surprise (0.076) (0.059) (0.076) (0.053)
Unpredicted Absolute -0.296%** 0.096** -0.268%** 0.1071%***
Surprise (0.108) (0.050) (0.106) (0.046)
Constant 0.503 1.220%** 0.738%** 2.320%** 0.773%** 2.318%**
(0.684) (0.134) (0.215) (0.165) (0.211) (0.155)
Symmetric Volatility 35.58%** 5.18%* 32.3] %% 7.06%**
Reaction (x°) [0.00] [0.02] [0.00] [0.01]
Observations 30 459 316 260 316 260
No. of groups 24
Firm effects Yes

Notes: Estimation results of equation (A.4) are presented with robust standard errors in parentheses. Observed absolute surprise (i.e.,
absolute forecast error) is defined in percentage terms as [SURP;| = | 100 X [(Actual; — Forecasti;) / Actual¢] |, where Forecast;; is the
forecast made by firm i. Median absolute surprise is the median of absolute surprises across firms within a year, defined as
MED(|SURP{|) = median( [SURPj ). Predicted and unpredicted absolute surprises are, respectively, the predicted dependent variables
and predicted residuals from model (1) in table A.2 with the minimum AIC and BIC and from model (3) with the second smallest AIC
and BIC. To account for the increased sampling variability induced by using generated regressors, models (3)-(4") are estimated via
the generalized method of moments (GMM). Symmetric volatility reaction (Chi-squared test, with p-values in brackets) tests the
equality of the coefficient estimates for predicted and unpredicted absolute surprises. The asterisks, ***, ** and *, represent statistical
significance at the 1%, 5%, and 10%, respectively.
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