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Abstract 

We investigate the impact of cognitive biases and heterogeneity in firm-level forecasts of USDA 

corn and soybean production estimates on market price reactions using two approaches.  First, 

after adjusting for cognitive biases, we decompose market surprises—defined as the difference 

between USDA estimates and private forecasts—into expected and unexpected components to 

test whether futures prices and volatility respond only to the unexpected component, a condition 

indicative of market efficiency.  Second, we construct a range of market surprise measures to 

determine which best explains price movements on USDA report release days.  We find that the 

corn futures market exhibits informational inefficiency with respect to anchoring bias, as prices 

respond to both components of the surprise, and the soybean futures market demonstrates 

informational efficiency, with prices reacting solely to the unexpected surprise.  The pattern is 

reversed for attribution bias, with corn volatility reacting only to the unexpected surprise, and 

soybean volatility to both components of the surprise.  For modeling, we find that accounting for 

heterogeneity among individual forecasts enhances the explanatory power of price reaction 

models. 
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Cognitive Biases in Industry Forecasts of USDA Reports: Implications for Price Reactions 

and Market Surprise Measures 

Introduction 

The value, impact, and welfare effects of the U.S. Department of Agriculture (USDA) reports are 

frequently measured by the commodity price and volatility movements to their release (e.g., 

Milonas 1987; Sumner and Mueller 1989; Fortenbery and Sumner 1993; Adjemian 2012; Karali 

2012; Dorfman and Karali 2015; Ying, Chen, and Dorfman 2019; Adjemian and Irwin 2020; 

McKenzie and Ke 2022).1  These price movements are especially pronounced when the USDA 

figures deviate from market expectations, where the differences between the two are commonly 

referred to as market surprises (e.g., Colling, Irwin, and Zulauf 1996; Garcia et al. 1997; Good 

and Irwin 2006; McKenzie 2008; Karali et al. 2019).  Historically, studies have relied on 

industry polls aggregated by news agencies like Bloomberg or Reuters—using the mean or the 

median of individual forecasts as proxies for market expectations.  However, this approach has 

some limitations.  First, it ignores the heterogeneity among forecasters, which could increase the 

richness of the analysis and the scope of the research.  Fernandez-Perez et al. (2019), for 

instance, show that the dispersion among analysts’ forecasts significantly affects bid-ask spreads 

in corn, soybean, and wheat futures prices during USDA report releases. 

Second, it ignores various forms of biases found in market surprises.  For example, 

Karali, Irwin, and Isengildina-Massa (2020) demonstrate that market surprises constructed using 

the median of firm-level expectations are subject to attenuation bias, and thus, the true price 

 
1 For a comprehensive review of previous studies on the impact of various USDA reports, see Isengildina-Massa, 
Karali, and Irwin (2024). 
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reactions are underestimated in previous studies.2  Another recent study documents the existence 

of cognitive biases, such as anchoring and attribution, in industry expectations of corn and 

soybean production estimates for the USDA’s August Crop Production report (Karali, 

Isengildina-Massa, and Irwin 2025).3  The authors argue that market surprises become partly 

predictable when there is any form of systematic bias in industry expectations.  The 

predictability of the market surprise, then, would provide profit opportunities to financial market 

participants who are aware of these biases, thereby altering welfare impacts. 

In this study, we investigate the informational efficiency of futures markets by testing 

whether prices and volatility react to the predicted component of the USDA news induced by 

anchoring and attribution biases.  To this end, we first summarize the evidence of anchoring and 

attribution biases in the industry expectations demonstrated in Karali, Isengildina-Massa, and 

Irwin (2025).  We then follow the methods outlined in Campbell and Sharpe (2009) and 

Isengildina-Massa, Karali, and Irwin (2017) to decompose the market surprise into anticipated 

and unanticipated components after accounting for these biases and model the price and 

volatility reactions to USDA reports as a function of the decomposed surprise measures.  If 

market participants are aware of and account for the biases, prices and volatility should only 

respond to the unexpected component of the surprise, implying an informationally efficient 

market.  On the other hand, if market participants are unaware of or fail to account for the 

cognitive biases in industry forecasts, prices and volatility would also react to the expected 

component of the surprise, suggesting an informationally inefficient market. 

 
2 Attenuation bias refers to the systematic underestimation of the true relationship between variables, typically 
caused by measurement error in the explanatory variable. 
3 Anchoring bias describes the tendency to rely heavily on an initial, easily accessible reference point when forming 
forecasts, with subsequent adjustments made relative to that anchor.  Attribution bias reflects analysts’ 
overconfidence in their forecasting abilities, often stemming from previous successful predictions. 
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These inefficiency concerns also raise the question of which surprise measure should be 

used to assess market reaction to USDA reports.  We tackle this question by developing various 

surprise measures that incorporate the heterogeneity among private forecasts, as well as the 

predictability due to cognitive biases, and comparing the explanatory power of the price reaction 

tests across different specifications. 

We find that market participants fail to account for anchoring bias in corn forecasts, as 

prices respond to the predicted component of surprises—even in ex-ante analyses using the latest 

available information.  However, corn price volatility reacts only to the unpredicted component, 

suggesting awareness of attribution bias.  In contrast, soybean prices respond only to unpredicted 

surprises, indicating that anchoring bias is accounted for, while volatility responds to the 

predicted component, implying attribution bias is overlooked.  In terms of modeling, the highest 

explanatory power for corn comes from using the median forecast to compute surprises and 

including the interquartile range of firm-level forecasts in an ordinary least squares (OLS) model.  

For soybeans, the best results come from decomposed surprises in a fixed-effects panel model, 

incorporating the median absolute deviation of firm-level forecasts.  Overall, our results 

highlight that accounting for firm-level forecast heterogeneity improves the explanatory power 

of price reactions to USDA news.  The findings of this study will help us improve how we 

incorporate industry expectations information into market reaction tests to assess the value and 

welfare effects of USDA reports. 

Empirical Framework 

Based on the findings in Karali, Isengildina-Massa, and Irwin (2025), we focus on anchoring and 

attribution biases in industry forecasts to investigate whether financial market participants are 

informationally efficient by testing price and volatility reactions to the predicted surprise 
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components induced by these cognitive biases.  Note that although the regression equations 

testing for anchoring and attribution biases use the forecast error and absolute forecast error, 

respectively, as dependent variables, the forecast error itself is calculated in the same way as the 

market surprise commonly employed in the literature.  For brevity, we focus on the anchoring 

bias in the main body of the paper and present the methods and empirical results for the 

attribution bias in the appendix.   

Anchoring bias and price reaction tests 

Anchoring bias is defined as a form of cognitive bias in which people form their forecasts by 

starting from an easily available reference point and then make adjustments based on this value 

(Tversky and Kahneman 1974).  Karali, Isengildina-Massa, and Irwin (2025) follow Campbell 

and Sharpe (2009) and test for anchoring bias using a regression equation with the forecast error 

as the dependent variable.  We estimate the following regression equation with firm fixed 

effects: 

(1)  𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝜑𝜑 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 ,  

where 𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁 represents the firms making forecasts and 𝑡𝑡 = 1, 2,⋯ ,𝑇𝑇 denotes the years.  

The dependent variable 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is the forecast error (i.e., surprise), calculated in percentages to 

account for the changes in magnitudes across years as follows: 

(2)  𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 100 ×
(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡
 , 

 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 is the actual value in year t and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is the forecast made by firm i in year 

t.  The deviation from anchor is defined in percentages as 100 × [(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 −

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑡𝑡)/𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑡𝑡] and 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑡𝑡 is the initial starting point.  Forecast errors are systematically 
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biased in a predictable manner consistent with anchoring if the slope estimate in equation (1) is 

positive and statistically significant. 

The finding of an anchoring bias makes the forecast error, which is equivalent to the 

market surprise measure used in the literature, partly predictable.  The predicted dependent 

variable from equation (1), 𝐹𝐹𝐹𝐹�𝑖𝑖𝑖𝑖, can be considered as the expected surprise, and the predicted 

residuals, 𝜀𝜀𝑖̂𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝐹𝐹�𝑖𝑖𝑖𝑖, as the unexpected, “true” surprise (Campbell and Sharpe 2009; 

Isengildina-Massa, Karali, and Irwin 2017).  We can then use the decomposed surprise measures 

to test for the price reactions by estimating the following regression equation with firm fixed 

effects: 

(3)  𝛥𝛥𝑃𝑃𝑖𝑖𝑖𝑖 = 𝜔𝜔𝑖𝑖 + 𝜂𝜂1𝐹𝐹𝐹𝐹�𝑖𝑖𝑖𝑖 + 𝜂𝜂2 𝜀𝜀𝑖̂𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖,  

where 𝛥𝛥𝑃𝑃𝑖𝑖𝑖𝑖 = 100 × (ln𝑃𝑃𝑡𝑡 − ln𝑃𝑃𝑡𝑡−1) is the continuously compounded daily return on the 

commodity futures contract with price 𝑃𝑃𝑡𝑡, and it is the same for all firms (𝛥𝛥𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛥𝛥𝑃𝑃𝑡𝑡 , ∀𝑖𝑖).  The 

null hypothesis of an informationally efficient market is 𝜂𝜂1 = 0, which suggests that market 

participants are aware of the anchoring bias in industry forecasts and that this information is 

already reflected in prices.  To account for the increased sampling variability induced by using 

generated regressors, we estimate the model in (3) via the generalized method of moments 

(GMM) outlined in Campbell and Sharpe (2009). 

Data 

We utilize the same data set in Karali, Isengildina-Massa, and Irwin (2025), containing firm-

level forecasts for corn and soybean production in USDA’s Crop Production reports.  These 

reports are prepared and published by the National Agricultural Statistical Service (NASS) 

agency of USDA and contain survey-based estimates of yield and production for major crops 
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consistent with their growing cycles.  USDA publishes the first marketing-year production 

estimates for corn and soybeans in August, then revises them through November, and finalizes 

them in the January Crop Production Annual Summary (CPAS) report.  We attain futures price 

data from CRB Trader.  Corn and soybean futures contracts are traded at the Chicago Mercantile 

Exchange (CME) Group, with multiple contract maturities.  We use the December contract for 

corn and the November contract for soybeans to represent the new crop futures series. 

The proprietary firm-level forecast dataset includes companies that participate in polls 

conducted by news wire agencies and provide forecasts for crop production, crop yield, planted 

acreage, and stocks for corn, soybean, and wheat varieties.4  Because of the importance of being 

the first production estimates for corn and soybeans, as well as data availability, we focus on the 

August Crop Production report.  Following Karali, Isengildina-Massa, and Irwin (2025), we take 

the production figures in the August report as the actual values firms try to forecast.5 

Our sample of industry forecasts for the upcoming August Crop Production report covers 

1992 to 2021.6  The dataset is an unbalanced panel, with some companies disappearing from the 

sample in the early 2000s (the earliest in 2002) and some entering the sample late (the latest in 

2012).  We exclude the firms without forecasts after 2010 to avoid using a panel dataset in which 

 
4 Wire news services, such as Bloomberg and Reuters, poll advising companies, commodity market experts, and 
market analysts for their expectations regarding the upcoming USDA reports.  These are also known as trade 
estimates.  While the poll results are available to Bloomberg subscribers, to the best of our knowledge, they only go 
back to 2010.  In contrast, our private source has been compiling industry polls from various sources since the late 
1980s, providing us with a unique opportunity to leverage industry forecasts that extend further back into the past. 
5 As discussed in Karali, Isengildina-Massa, and Irwin (2025), Bloomberg has started releasing two sets of forecasts 
in recent years.  One set includes analysts’ expectations of USDA figures in the upcoming reports, and the other 
contains analysts’ forecasts for the unobservable actual value.  However, these two sets of forecasts are not available 
for each report, and for a given report, such as Grain Stocks, their availability varies by the report month.  Since our 
proprietary data set includes only one forecast for each firm without indicating to which forecast it refers, we assume 
that the firms in our dataset forecast the crop production figures in August reports. 
6 Even though the industry forecast dataset begins in 1989, the number of firms providing forecasts is sparse before 
1992, constraining the start of our sample period.  Some companies disappear from the dataset in the early 2000s 
(the earliest in 2002), while others enter the dataset relatively late (the latest in 2012). 
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some firms do not overlap with others or have only one common time period.  From the 

remaining sample, we exclude firms with fewer than ten observations between 1992 and 2021, 

resulting in an unbalanced panel of 24 firms.  The number of firms per year ranges from nine to 

24, with an average of 15.3 firms over the 30-year period. 

Figure 1 displays the empirical probability distributions (i.e., kernel) of forecast errors 

(i.e., surprises) and absolute forecast errors (i.e., absolute surprises) relative to a normal 

distribution.  Soybean forecast errors are distributed relatively widely, indicating larger standard 

deviations.  Figure 2 presents the distributions of forecast errors and absolute forecast errors for 

each year across firms that provided a forecast.  The horizontal lines in each box represent the 

median, and the dots represent the “outliers.”  For corn, the median absolute forecast error is 

lowest in 2001 and highest in 2019, and for soybeans, it is lowest in 2001 and highest in 2015. 

Empirical Results 

Anchoring bias 

We assign four different measures for the anchor when estimating equation (1), following Karali, 

Isengildina-Massa, and Irwin (2025).  The first anchoring variable is the final production of the 

previous crop year published in the USDA’s January CPAS report, 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 1𝑡𝑡 =

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−1.  To account for the adjustment made by the forecasters to smooth out the 

fluctuations in production across years, we take the second anchoring variable as the average of 

the final production values in the last three years, 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 2𝑡𝑡 = 1
3
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−𝑗𝑗3
𝑗𝑗=1 .  

While the previous year’s final production can be considered as the latest information the 

forecasters have about the upcoming crop year’s production, some firms might think there is a 

pattern in USDA’s estimates for the first production figures for the crop year and therefore use 
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the actual value in the previous year’s August Crop Production report as a starting point.  

Accordingly, we take the third anchoring variable as 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 3𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1, and the fourth 

anchoring variable is the average of the actual values in the last three periods to smooth out the 

fluctuations over time, 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 4𝑡𝑡 = 1
3
∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−𝑗𝑗3
𝑗𝑗=1 . 

The regression results are presented in table 1 for corn and in table 2 for soybeans.7  As 

indicated in the previous study of Karali, Isengildina-Massa, and Irwin (2025), corn forecasts 

exhibit reverse anchoring, evidenced by the negative coefficient estimates across all 

specifications.  Thus, firms make adjustments in the opposite direction of their initial starting 

value (i.e., anchor).  The model with the lowest Akaike information criteria (AIC) and Bayesian 

information criteria (BIC) is indicated with the darker shade, and the model with the second 

lowest AIC and BIC is indicated with the lighter shade.  It appears that the models with an 

anchoring variable created with smoothing fit the data better. 

For soybeans, coefficient estimates are positive across all specifications, but are 

statistically significant only in models with smoothed anchoring variables.  Thus, soybean 

forecasts exhibit anchoring bias, where firms base their current forecasts on a reference value 

(smoothed production values over the last three years) and make sufficient adjustments.  Similar 

to corn, the model with the anchoring variable set to the average August production over the last 

three years has the smallest AIC and BIC, while the model with the average of the previous three 

years’ final production as the anchoring variable has the second smallest AIC and BIC. 

 

 
7 These results replicate tables 12 and 13 in Karali, Isengildina-Massa, and Irwin (2025), with slight differences in 
the corn results arising from our correction of two data points misrepresenting the actual USDA figure in 1997 and 
2016.  



9 
 

Price reaction tests with anchoring bias 

The statistical evidence of anchoring and reverse anchoring bias suggests that forecast errors 

(i.e., market surprises) are partly predictable.  If markets are informationally efficient, prices 

should not react to the predicted component of the surprise.  The price reaction test results from 

equation (3) are presented in table 3 for corn and in table 4 for soybeans.  For comparison 

purposes, column (1) of these tables presents the results obtained from the ordinary least squares 

(OLS) regression of futures price changes on the surprise variable taken as the median of firm-

level surprises within a year.  Column (2) of both tables uses firm-level surprises in a panel 

regression with firm fixed effects.  Columns (3) and (3') decompose the surprise measure into 

expected and unexpected components by using the predicted residuals from the anchoring 

regression with the lowest AIC and BIC (columns (4) in table 1 and 2 for corn and soybeans, 

respectively).  Similarly, columns (4) and (4') decompose the surprise measure by using the 

predicted residuals from the anchoring regression with the second-lowest AIC and BIC (columns 

(2) in tables 1 and 2). 

The difference between (3) and (3'), and between (4) and (4'), stems from how the 

anchoring regression is estimated.  In columns (3) and (4), the anchoring regression equation is 

estimated using the entire sample, thereby making the decomposition of the surprise ex-post.  To 

account for the latest information about the anchoring bias in industry forecasts, we estimate the 

anchoring regression using a 10-year rolling window.  Specifically, starting from 2002, we use 

the previous 10 years of data (1992-2001) to estimate equation (1) and calculate the predicted 

forecast errors and predicted residuals, which represent, respectively, the expected and 

unexpected components of the surprise in 2002.  We repeat this process for each year from 2002 

to 2021 to create a series of decomposed surprise measures.  Columns (3') and (4') present the 
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results obtained with ex-ante decomposed surprise measures.  Recall that we estimate models (3) 

and (4') using the GMM approach outlined in Campbell and Sharpe (2009), which accounts for 

the increased sampling variability resulting from the generated regressors.  For these models, we 

also test whether prices react to expected and unexpected surprises symmetrically (Campbell and 

Sharpe 2009). 

For corn, the surprise coefficient estimates are negative across all models in table 3, 

suggesting that positive supply surprises (i.e., higher-than-expected production) lower futures 

prices, and negative supply surprises (i.e., lower-than-expected production) put upward pressure 

on prices.  We find that prices react to both predicted and unpredicted surprise components, even 

after decomposing the surprise measure ex-ante.  These results suggest that financial market 

participants are either unaware of or fail to account for the anchoring bias in corn production 

forecasts, implying an informationally inefficient market.  The symmetric price reaction to both 

predicted and unexpected surprises is rejected, except for the model with ex-ante decomposed 

surprises (column (3')).  When the symmetry is rejected, the magnitude of price reaction to the 

true surprise is about half of that to the predicted surprise.  

The surprise coefficient estimates for soybeans in table 4 are negative when statistically 

significant, aligning with our expectations.  We find that once we account for the latest 

information set that market participants could use to adjust for the anchoring bias (i.e., using ex-

ante decomposed surprises), prices only react to the true surprise.  The coefficient estimate for 

the predicted surprise is statistically insignificant in both (3') and (4').  These findings reveal that 

market participants are aware of and account for the anchoring bias in industry forecasts of 

soybean production, implying an informationally efficient market. 
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Volatility reaction tests with attribution bias 

We estimate the models in Karali, Isengildina-Massa, and Irwin (2025) to determine the factors 

affecting forecast inaccuracy (appendix tables A.1 for corn and A.2 for soybeans).  Like the 

anchoring bias, we select the two models with the lowest AIC and BIC for volatility reaction 

tests and present the results in appendix tables A.3 and A.4 for corn and soybeans, respectively.8 

For corn, we find that volatility reacts to both predicted and unpredicted absolute surprise 

components when the decomposition is performed ex post.  However, once we account for the 

latest information set that market participants could use to adjust for the attribution bias, we find 

that volatility only reacts to the unpredicted absolute surprise obtained from the forecast 

inaccuracy model with the lowest AIC and BIC.  For soybeans, though, volatility response to the 

predicted absolute surprises, both ex-post and ex-ante, is statistically significant.  These findings 

are opposite to the case with anchoring bias and suggest that while the corn futures market is 

informationally efficient, the soybean futures market exhibits informational inefficiency in the 

sense of attribution bias. 

Which surprise measure better explains price reaction? 

The findings presented in this study demonstrate that the chosen surprise variable, especially 

when there is any form of bias in market forecasts, affects the measurement of price reactions, 

thereby influencing the indirect welfare effects of public information.  Furthermore, the median 

 
8 For comparison purposes, we show in column (1) of both tables the results obtained from the ordinary least squares 
(OLS) regression of volatility (i.e., absolute futures price changes) on the absolute surprise variable taken as the 
median of firm-level absolute surprises within a year.  Column (2) of both tables uses firm-level absolute surprises 
in a panel regression with firm fixed effects.  Columns (3) and (4) decompose the absolute surprise measure into 
expected and unexpected components by using the predicted absolute residuals from the inaccuracy regression with 
the two lowest AIC and BIC (columns (1) and (2) in table A.1 for corn, and columns (6) and (2) in table A.2 for 
soybeans).  Columns (3') and (4') present the results obtained with ex-ante decomposed absolute surprise measures 
in the GMM framework of Campbell and Sharpe (2009). 
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of industry expectations, typically used to calculate market surprise, ignores the dispersion 

among analysts’ forecasts that may help explain market reaction (Fernandez-Perez et al. 2019). 

We propose several alternative measures of market surprise that include variability and biases in 

firm-level forecasts and assess which surprise measure better explains the variation in prices 

around USDA report releases. 

In the simplest form, we use the median of industry forecasts rather than firm-level 

forecasts while creating the surprise variable (i.e., forecast error) for each year, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 =

100 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

.  We then normalize this surprise measure with (a) the standard 

deviation of firm-level forecasts within a year, (b) the standard deviation of the median surprise 

across the sample period, (c) the median absolute deviation (MAD) of firm-level forecasts from 

the consensus, which is taken as the median of forecasts across all firms within a year: 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 =

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ��100 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)

��; and (d) the interquartile range (IQR), the 

difference between the third and first quartile, of firm-level forecasts divided by the median 

forecast: 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 = 𝑄𝑄3 �100 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)

� − 𝑄𝑄1 �100 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)

�.  Similar to 

Fernandez-Perez et al. (2019), we further run regressions with the surprise measure, MAD, and 

their interaction, as well as regressions with the surprise measure, IQR, and their interaction.  

The adjusted R-squared values from these regressions estimated via OLS are presented in 

column (1) of table 5.  Column (2) repeats the same analysis by using the firm-level surprises in 

a panel regression framework.  Finally, columns (3) and (4) utilize the firm-level ex-ante 

decomposed surprises obtained from the anchoring bias models with the minimum and the 

second-smallest AIC and BIC (corresponding to columns (3') and (4') in tables 3-4).  We indicate 

the models with the largest adjusted R-squared values in bold font in table 5. 
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For corn, the OLS regression with the surprise variable, created using the median of all 

firm-level forecasts, and the interquartile range of firm-level forecasts yields the largest 

explanatory power of price changes around the USDA’s August Crop Production report releases, 

with an adjusted R-squared value of 48%.  When compared to the other rows in column (1), it is 

seen that the largest gain in explanatory power is achieved against the model with the median 

surprise standardized by the IQR.  The smallest gain is over the model with the median surprise 

and MAD (adjusted R-squared value of 46.6%).  The models using the surprises decomposed 

using the anchoring regression results do not offer higher explanatory power.  This might not be 

surprising, as we demonstrated in table 3 that financial market participants are either unaware of 

the anchoring bias or fail to account for it in their trading decisions.  Among the panel regression 

models presented in columns (2)-(4), the largest adjusted R-squared is obtained with the model 

that uses firm-level surprises, IQR, and their interaction. 

For soybeans, we find that the model with the decomposed surprises (obtained from the 

anchoring regression with the second-smallest AIC and BIC), MAD, and their interaction yields 

the largest explanatory power, with an adjusted R-squared value of 38.6%.  While the 

explanatory power is not substantially different, and sometimes lower, relative to the models in 

column (3) with decomposed surprises obtained from a different anchoring regression, there is 

significant improvement over the models using the median surprise presented in column (1).  

This is not surprising, as we showed in table 4 that financial market participants are aware of the 

anchoring bias in the industry’s soybean production forecasts and make adjustments in their 

trading decisions.  Among the OLS regression models presented in column (1), the largest 

adjusted R-squared value is obtained with the model that uses the median surprise standardized 

by the IQR. 
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Conclusions  

Market surprises—differences between USDA crop production estimates and industry 

forecasts—are widely used to evaluate the impact of USDA reports.  While researchers often 

rely on the median of individual forecasts to represent market expectations, this approach 

overlooks both the heterogeneity among forecasters and the presence of cognitive biases.  

Forecast dispersion, for instance, has been shown to influence bid-ask spreads in commodity 

futures markets during report releases (Fernandez-Perez et al. 2019), suggesting that forecaster 

diversity carries meaningful information.  Moreover, studies such as Karali, Irwin, and 

Isengildina-Massa (2020) demonstrate that median-based surprises can suffer from attenuation 

bias, leading to understated price reactions.  More recent findings also document cognitive 

biases—such as anchoring and attribution—in crop production forecasts (Karali, Isengildina-

Massa, and Irwin 2025), making parts of the market surprise predictable and potentially 

exploitable, with implications for market efficiency and welfare analysis. 

In this study, we examine the informational efficiency of futures markets by testing 

whether prices and volatility respond to the predictable component of USDA news driven by 

anchoring and attribution biases.  We find that market participants fail to correct for the reverse 

anchoring bias in corn forecasts, as evidenced by significant price reactions to the predicted 

component of the surprise.  In contrast, soybean markets appear to adjust for anchoring bias, with 

prices reacting only to the unpredicted—or true—surprise.  These results indicate informational 

inefficiency in corn futures but efficiency in soybean futures regarding anchoring bias.  For 

attribution bias, the pattern reverses: corn volatility responds only to the unpredicted component, 

suggesting bias awareness, while soybean volatility reacts to both predicted and unpredicted 

components, indicating a failure to account for attribution bias. 
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We further explore which specification of the market surprise measure best captures price 

variation on days of USDA report releases.  Our analysis shows that incorporating the dispersion 

of firm-level forecasts, such as the interquartile range or median absolute deviation, improves 

model fit, even when the surprise itself is calculated using the median forecast rather than firm-

level data.  This suggests that forecast dispersion captures important dimensions of uncertainty 

and disagreement among forecasters, both of which play a critical role in shaping market 

reactions.  These findings underscore the importance of accounting for heterogeneity among 

forecasters when assessing the price effects of USDA reports and contribute to a more nuanced 

understanding of how information is processed in futures markets. 
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Table 1. Anchoring Bias, Corn 

  (1) (2) (3) (4) 

 
Forecast 

Error 
Forecast 

Error 
Forecast 

Error 
Forecast 

Error 
Deviation from     
Anchor 1 -0.078***       
  (0.008)       
          
Anchor 2   -0.158***     
    (0.015)     
          
Anchor 3     -0.096***   
      (0.009)   
          
Anchor 4       -0.137*** 
        (0.019) 
          
Constant 0.898*** 1.347*** 0.876*** 1.240*** 
  (0.025) (0.060) (0.019) (0.067) 
Firm effects Yes Yes Yes Yes 
          
Observations 459 427 443 410 
No. of groups 24 24 24 24 
          
Loglikelihood -1,046.195 -949.428 -1,013.202 -940.089 
AIC 2,094.391 1,900.856 2,028.403 1,882.178 
BIC 2,098.520 1,904.913 2,032.497 1,886.195 

Notes: Estimation results of equation (1) with different anchoring measures are presented. 
Robust standard errors are in parentheses. Forecast error is defined in percentage terms as FEit = 
100×[(Actualt − Forecastit) / Actualt] and deviation from anchor in percentage terms as 
100×[(Forecastit − Anchort) / Anchort]. Anchor 1t = Final Productiont-1; Anchor 2t = (Final 
Productiont-1+Final Productiont-2+Final Productiont-3)/3; Anchor 3t = Actualt-1; Anchor 4t = 
(Actualt-1+Actualt-2+Actualt-3)/3. Constant refers to the average of firm fixed effects. AIC refers 
to Akaike information criteria, and BIC is Bayesian information criteria. The dark (light) gray 
shaded column represents the model with the (second) smallest AIC and BIC. The asterisks, ***, 
**, and *, represent statistical significance at the 1%, 5%, and 10%, respectively. 
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Table 2. Anchoring Bias, Soybeans 

  (1) (2) (3) (4) 

 
Forecast 

 Error 
Forecast 

 Error 
Forecast   

Error 
Forecast  

Error 
Deviation from     
Anchor 1 -0.078***       
  (0.008)       
          
Anchor 2   -0.158***     
    (0.015)     
          
Anchor 3     -0.096***   
      (0.009)   
          
Anchor 4       -0.137*** 
        (0.019) 
          
Constant 0.898*** 1.347*** 0.876*** 1.240*** 
  (0.025) (0.060) (0.019) (0.067) 
          
Firm effects Yes Yes Yes Yes 
          
Observations 459 427 443 410 
No. of groups 24 24 24 24 
          
Loglikelihood -1,046.195 -949.428 -1,013.202 -940.089 
AIC 2,094.391 1,900.856 2,028.403 1,882.178 
BIC 2,098.520 1,904.913 2,032.497 1,886.195 

Notes: Estimation results of equation (1) with different anchoring measures are presented. 
Robust standard errors are in parentheses. Forecast error is defined in percentage terms as FEit = 
100×[(Actualt − Forecastit) / Actualt] and deviation from anchor in percentage terms as 
100×[(Forecastit − Anchort) / Anchort]. Anchor 1t = Final Productiont-1; Anchor 2t = (Final 
Productiont-1+Final Productiont-2+Final Productiont-3)/3; Anchor 3t = Actualt-1; Anchor 4t = 
(Actualt-1+Actualt-2+Actualt-3)/3. Constant refers to the average of firm fixed effects. AIC refers 
to Akaike information criteria, and BIC is Bayesian information criteria. The dark (light) gray 
shaded column represents the model with the (second) smallest AIC and BIC. The asterisks, ***, 
**, and *, represent statistical significance at the 1%, 5%, and 10%, respectively. 
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Table 3. Price Reaction Tests with Anchoring Bias, Corn 

  (1) (2) (3) (3') (4) (4') 

      
Ex-post 

[Table 1(4)] 
Ex-ante 

[Table 1(4)] 
Ex-post 

[Table 1(2)] 
Ex-ante 

[Table 1(2)] 

  
Futures 
Return 

Futures 
Return 

Futures 
Return 

Futures 
Return 

Futures 
Return 

Futures 
Return 

Median Surprise -0.999***           
  (0.202)           
Observed Surprise   -0.725***         
    (0.041)         
Predicted Surprise     -1.051*** -0.874*** -1.095*** -1.294*** 
      (0.101) (0.133) (0.081) (0.119) 
Unpredicted Surprise     -0.655*** -0.683*** -0.583*** -0.590*** 
      (0.061) (0.067) (0.063) (0.072) 
Constant 0.316 0.178*** 0.543*** 0.338** 0.529*** 0.455*** 
  (0.429) (0.027) (0.127) (0.156) (0.113) (0.144) 
Symmetric Price Reaction (χ2)    10.76*** 1.80 23.80*** 22.23*** 
       [0.00]  [0.18]  [0.00]  [0.00] 
              
Observations 30 459 410 335 427 342 
No. of groups   24         
Firm effects   Yes         

Notes: Estimation results of equation (3) are presented with robust standard errors in parentheses. Observed surprise (i.e., forecast error) is defined 
in percentage terms as SURPit = 100×[(Actualt − Forecastit) / Actualt], where Forecastit is the forecast made by firm i. Median surprise is the 
median of surprises across firms within a year, defined as MED(SURPt) = median(SURPit). Predicted and unpredicted surprises are, respectively, 
the predicted dependent variables and predicted residuals from model (4) in table 1 with the minimum AIC and BIC and from model (2) with the 
second smallest AIC and BIC. To account for the increased sampling variability induced by using generated regressors, models (3)-(4') are 
estimated via the generalized method of moments (GMM). Symmetric price reaction (Chi-squared test, with p-values in brackets) tests the equality 
of the coefficient estimates for predicted and unpredicted surprises. The asterisks, ***, **, and *, represent statistical significance at the 1%, 5%, 
and 10%, respectively. 
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Table 4. Price Reaction Tests with Anchoring Bias, Soybeans 

  (1) (2) (3) (3') (4) (4') 

      
Ex-post 

[Table 2(4)] 
Ex-ante 

[Table 2(4)] 
Ex-post 

[Table 2(2)] 
Ex-ante 

[Table 2(2)] 

  
Futures 
Return 

Futures 
Return 

Futures 
Return  

Futures 
Return  

Futures 
Return  

Futures 
Return  

Median Surprise -0.555***           
  (0.189)           
Observed Surprise   -0.428***         
    (0.039)         
Predicted Surprise     -0.751*** 0.146 -0.282* 0.131 
      (0.134) (0.128) (0.163) (0.130) 
Unpredicted Surprise     -0.415*** -0.503*** -0.443*** -0.486*** 
      (0.044) (0.042) (0.043) (0.041) 
Constant 0.160 -0.074*** 0.065 0.001 -0.088 -0.141 
  (0.462) (0.017) (0.129) (0.126) (0.126) (0.123) 
Symmetric Price Reaction (χ2)    6.36*** 29.43*** 0.91 29.41*** 
       [0.01]  [0.00]  [0.34]  [0.00] 
              
Observations 30 459 410 335 427 342 
No. of groups   24         
Firm effects   Yes         

Notes: Estimation results of equation (3) are presented with robust standard errors in parentheses. Observed surprise (i.e., forecast error) is defined 
in percentage terms as SURPit = 100×[(Actualt − Forecastit) / Actualt], where Forecastit is the forecast made by firm i. Median surprise is the 
median of surprises across firms within a year, defined as MED(SURPt) = median(SURPit). Predicted and unpredicted surprises are, respectively, 
the predicted dependent variables and predicted residuals from model (4) in table 2 with the minimum AIC and BIC and from model (2) with the 
second smallest AIC and BIC. To account for the increased sampling variability induced by using generated regressors, models (3)-(4') are 
estimated via the generalized method of moments (GMM). Symmetric price reaction (Chi-squared test, with p-values in brackets) tests the equality 
of the coefficient estimates for predicted and unpredicted surprises. The asterisks, ***, **, and *, represent statistical significance at the 1%, 5%, 
and 10%, respectively.
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Table 5. Explanatory Power of Surprise Measures 

  (1) (2) (3) (4) 
        Ex-ante Ex-ante 
        [Table 3(3')] [Table 3(4')] 
 Dep. var.: Futures Return 

  Median 
Firm-
level 

Firm-level 
Decomposed 

Firm-level 
Decomposed 

  Corn 
Surprise   0.426 0.351 0.317 0.354 
Surprise ÷ Std. Dev. (Forecasts)   0.350 0.313 0.296 0.315 
Surprise ÷ Std. Dev. (Surprise)   0.426 0.351 0.296 0.315 
Surprise ÷ MAD   0.329 0.269 0.195 0.227 
Surprise ÷ IQR   0.266 0.205 0.137 0.158 
            
Surprise, MAD   0.466 0.375 0.345 0.362 
Surprise, MAD, Surprise × MAD   0.446 0.398 0.345 0.362 
            
Surprise, IQR   0.480 0.402 0.381 0.386 
Surprise, IQR, Surprise × IQR   0.460 0.423 0.381 0.386 

  Soybeans 

Surprise   0.221 0.214 0.376 0.380 
Surprise ÷ Std. Dev. (Forecasts)   0.222 0.212 0.374 0.371 
Surprise ÷ Std. Dev. (Surprise)   0.221 0.214 0.374 0.371 
Surprise ÷ MAD   0.157 0.069 0.333 0.327 
Surprise ÷ IQR   0.232 0.216 0.360 0.344 
            
Surprise, MAD   0.215 0.219 0.383 0.386 
Surprise, MAD, Surprise × MAD  0.185 0.217 0.383 0.386 
            
Surprise, IQR   0.192 0.212 0.374 0.378 
Surprise, IQR, Surprise × IQR   0.194 0.227 0.374 0.378 

Notes: The table presents adjusted R-squared values from the regression of daily futures returns 
calculated as 𝛥𝛥𝑃𝑃𝑡𝑡 = 100 × (ln𝑃𝑃𝑡𝑡 − ln𝑃𝑃𝑡𝑡−1), where 𝑃𝑃𝑡𝑡 is the price of the new crop futures 
contract, on various surprise measures. MAD refers to the median absolute deviation, and IQR 
refers to the interquartile range. The dark and light gray shaded column uses the predicted and 
unpredicted surprises obtained from model (4) in tables 1 and 2 with the minimum AIC and BIC 
and from model (2) with the second smallest AIC and BIC, respectively. The maximum adjusted 
R-squared values across the models for each commodity are indicated with a bold font. 
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Figure 1. Empirical probability distributions of forecast errors 

Notes: Forecast error is defined in percentage terms as FEit = 100×[(Actualt − Forecastit) / Actualt], and absolute forecast error is 
defined as |FEit| = |100×[(Actualt − Forecastit) / Actualt]|.

Kernel

Normal

0
20

40
60

80
Fr

eq
ue

nc
y

-10 -5 0 5 10 15
Forecast Error

Corn

Kernel

Normal

0
10

20
30

40
50

Fr
eq

ue
nc

y

-10 -5 0 5 10
Forecast Error

Soybeans

Kernel

Normal

0
20

40
60

80
Fr

eq
ue

nc
y

0 5 10 15
Absolute Forecast Error

Corn

Kernel

Normal

0
10

20
30

40
50

Fr
eq

ue
nc

y

0 2 4 6 8
Absolute Forecast Error

Soybeans



26 
 

 

 
Figure 2. Forecast errors across firms over time 
Notes: Forecast error is defined in percentage terms as FEit = 100×[(Actualt − Forecastit) / 
Actualt], and absolute forecast error is defined as |FEit| = |100×[(Actualt − Forecastit) / 
Actualt]|. 
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Appendix: Attribution Bias and Volatility Reaction Tests 

In this appendix, we explain the empirical models used to verify the existence of attribution bias 

based on the econometric framework in Karali, Isengildina-Massa, and Irwin (2025).  After 

selecting the two models with the lowest Akaike information criteria (AIC) and Bayesian 

information criteria (BIC), we perform volatility reaction tests to the predicted component of the 

surprise induced by cognitive biases. 

Attribution bias is defined as overconfidence in analysts’ own forecasting skills resulting 

from having success in previous periods, making them deviate more from the consensus, which 

is taken as the median of others’ forecasts (Hong, Kubik, and Solomon 2000; Hilary and Menzly 

2006).  Karali, Isengildina-Massa, and Irwin (2025) investigated the existence of an attribution 

bias using two different approaches.  In one approach, they model the absolute value of forecast 

deviations from the consensus, and in the other, they model the absolute value of forecast errors.  

Since the absolute value of forecast errors corresponds to the absolute value of market surprises, 

the topic of interest in our study, we estimate the following regression equation that incorporates 

both firm and year fixed effects: 

(A.1)  |𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖| = 𝜋𝜋𝑖𝑖 + 𝛾𝛾𝑡𝑡 + 𝜙𝜙�𝐹𝐹𝐹𝐹𝑖𝑖,𝑡𝑡−1� + 𝛽𝛽 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 𝛿𝛿 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜆𝜆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖. 

The dependent variable, |𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖|, is the absolute value of the forecast error defined as 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 =

100 × (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

, where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 is the actual value in year t and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is the 

forecast made by firm i in year t (see equation (2) in the paper).  The parameters 𝜋𝜋𝑖𝑖 and 𝛾𝛾𝑡𝑡 

represent the firm and time effects, respectively.  A bold forecast is defined as one that 

significantly deviates from the consensus, where consensus is taken as the median (or mean) of 
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the other analysts’ forecasts.  We calculate the boldness score of each firm following Hong, 

Kubik, and Solomon (2000) as:  

(A.2)  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 100 − �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 − 1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 − 1
� × 100. 

 

We assign 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 to each firm for each year separately by ranking the absolute forecast 

deviation, |𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖|, from the largest to the smallest value, with the absolute forecast deviation in 

percentage terms is calculated as: 

(A.3)  |𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖| = �100 ×
�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹−𝑖𝑖,𝑡𝑡�

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹−𝑖𝑖,𝑡𝑡
�. 

 

The variable 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹−𝑖𝑖,𝑡𝑡 is the median of the forecasts made by other firms (excluding firm i) 

in year t, which implicitly assumes that each firm has perfect knowledge about the forecasts 

made by other firms.  With this setup, the firm with the largest deviation in magnitude takes the 

rank of one since a larger forecast deviation from the consensus indicates more boldness; the 

firm with the second-largest forecast deviation has the rank of two, and so on.  In the case of 

equal absolute forecast deviations for two or more firms, we use the mid-point of the rank for 

those firms; therefore, the boldness rank is not necessarily an integer.  As a result, the firm with 

the largest forecast deviation receives a score of 100, while the firm with the smallest forecast 

deviation receives a score of zero.  The median score in each year is 50 by construction.  As in 

Karali, Isengildina-Massa, and Irwin (2005), we proxy a firm’s experience by the running total 

of years the company provides forecasts, with the experience variable taking the value of one in 

the first year the company provides a forecast, and increasing by one in the year when that 

company makes a forecast.  We create the variable 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 to serve as a proxy for the frequency 

of superior forecasts, following Karali, Isengildina-Massa, and Irwin (2025), who used a similar 
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approach to Hilary and Menzly (2006).  Specifically, we count the number of times a firm’s 

absolute forecast error was below the median of other firms’ forecast errors (i.e., superior 

forecast) in the last three periods, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶��𝐹𝐹𝐹𝐹𝑖𝑖,𝑡𝑡−𝑗𝑗� < �𝐹𝐹𝐹𝐹−𝑖𝑖,𝑡𝑡−𝑗𝑗��, 𝑗𝑗 = 1, 2, 3.9  

Positive parameter estimates would indicate that forecast errors increase in magnitude with 

previous forecast errors, boldness, experience, and prior success. 

Similar to the case with anchoring bias, the finding of statistically significant slope 

estimates in equation (A.1) suggests that the absolute forecast error, which is equivalent to the 

absolute market surprise, is partly predictable.  Thus, we can decompose the absolute surprise 

measure into expected and unexpected components, where the expected component is simply the 

predicted dependent variable from equation (A.1.), �𝐹𝐹𝐹𝐹�𝑖𝑖𝑖𝑖�, and the unexpected component is the 

predicted residuals, |𝜖𝜖𝑖̂𝑖𝑖𝑖| = |𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖| − �𝐹𝐹𝐹𝐹�𝑖𝑖𝑖𝑖�.  We can then test for volatility reactions by estimating 

the following regression equation: 

(A.4)  |𝛥𝛥𝑃𝑃𝑖𝑖𝑖𝑖| = 𝜃𝜃𝑖𝑖 + 𝜓𝜓1�𝐹𝐹𝐹𝐹�𝑖𝑖𝑖𝑖� + 𝜓𝜓2 |𝜖𝜖𝑖̂𝑖𝑖𝑖| + 𝜐𝜐𝑖𝑖𝑖𝑖,  

where |𝛥𝛥𝑃𝑃𝑖𝑖𝑖𝑖| = |100 × (ln𝑃𝑃𝑡𝑡 − ln𝑃𝑃𝑡𝑡−1)| is the absolute value of continuously compounded 

daily return on the commodity futures contract with price 𝑃𝑃𝑡𝑡, which is a commonly-used 

volatility measure in the literature, and it is the same for all firms (|𝛥𝛥𝑃𝑃𝑖𝑖𝑖𝑖| = |𝛥𝛥𝑃𝑃𝑡𝑡|, ∀𝑖𝑖).  If the 

markets are informationally efficient, then 𝜓𝜓1 = 0, indicating that market participants are aware 

 
9 We estimate equation (A.1) using different regressors, which are presented in table A.1.  The accuracy score is 
calculated using equation (A.2), where we assign 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 for each year separately by ranking the absolute forecast 
error, |𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖|, from the smallest to the largest value.  Accordingly, the firm with the smallest forecast error receives 
the rank of one, the firm with the second-smallest forecast error receives the rank of two, and so on.  When forecast 
errors are equal for two or more firms, we use the mid-point of the rank; therefore, the accuracy rank is not 
necessarily an integer.  As a result, the accuracy score of the firm with the smallest forecast error is 100, and that of 
the firm with the largest forecast error is zero.  By definition, the median score in each year is 50.  We also create 
indicator variables for the accuracy and boldness scores and ranks for being in the top 5th percentile and the bottom 
5th percentile of their respective distribution. 
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of the attribution bias in industry forecasts and, therefore, volatility does not respond to the 

anticipated surprise component.  We estimate equation (A.4) using the GMM method in 

Campbell and Sharpe (2009) to account for the increased sampling variability introduced by 

using generated regressors. 
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Table A.1. Determinants of Forecast Inaccuracy, Corn 
  (1) (2) (3) (4) (5) (6) 

  

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 
Prior Absolute 
  Forecast Error 

-0.166*** -0.165***         
(0.041) (0.050)         

Prior Accuracy 
  Score  

    0.007**       
    (0.003)       

Boldness Score  0.012***   0.012***       
(0.003)   (0.003)       

Prior Accuracy 
  Rank  

      -0.040**     
      (0.016)     

Boldness Rank       -0.058***     
      (0.018)     

Prior Top 5% 
 Accuracy Score  

        0.555*** 0.536*** 
        (0.185) (0.176) 

Prior Bottom 5% 
 Accuracy Score  

          -0.095 
          (0.240) 

Top 5%  
  Boldness Score  

  1.172**     1.144** 1.090** 
  (0.461)     (0.458) (0.463) 

Bottom 5% 
  Boldness Score  

          -0.312* 
          (0.177) 

Experience 
  

0.078* 0.093** 0.069* 0.074* 0.081** 0.080* 
(0.042) (0.044) (0.039) (0.040) (0.040) (0.040) 

Prior Success 
  Frequency  

0.119 0.145* 0.094 0.110 0.210*** 0.208*** 
(0.074) (0.085) (0.091) (0.091) (0.076) (0.074) 

Constant 
  

2.307*** 2.781*** 1.777*** 3.233*** 2.407*** 2.459*** 
(0.497) (0.479) (0.492) (0.478) (0.466) (0.450) 

Firm effects Yes Yes Yes Yes Yes Yes 
Year effects Yes Yes Yes Yes Yes Yes 
Observations 316 316 316 316 316 316 
No. of groups 24 24 24 24 24 24 
Loglikelihood -473.653 -477.529 -477.258 -477.100 -479.065 -477.964 
AIC 993.305 1,001.057 994.515 1,000.200 1,004.129 1,001.929 
BIC 1,079.687 1,087.439 1,080.897 1,086.583 1,090.511 1,088.311 

Notes: Estimation results of equation (A.1) are presented along with alternative control variables. Robust standard errors are in 
parentheses.  Forecast error is defined in percentage terms as FEit = 100×[(Actualt − Forecastit) / Actualt], and forecast deviation 
in percentage terms as FDEVit = 100×[(Forecastit − Forecast-i,t) / Forecast-i,t], where Forecast-i,t is the median of the forecasts 
made by other firms. Accuracy and boldness scores are calculated as Scoreit = 100 − [(Rankit−1) / (Number of firmst−1)]×100, 
where Rankit is assigned for the accuracy score by ranking the absolute forecast error from the smallest to the largest value, with 
the smallest forecast error having the rank of one, and for the boldness score by ranking the absolute forecast deviation from the 
largest to the smallest value, with the largest forecast deviation having the rank of one. Experience is the running total of years 
firms provided a forecast and prior success frequency is the number of times a firm’s absolute forecast error was below the 
median of other firms’ forecasts errors in the last three periods, calculated as Freqit = Count (|FEi,t-j| < |FE-i,t-j|), j=1, 2, 3. Other 
variables are indicator variables for forecasts being in the specified percentile of the accuracy or boldness score distributions. 
Constant refers to the average of firm fixed effects. AIC refers to Akaike information criteria and BIC is Bayesian information 
criteria. The dark (light) gray shaded column represents the model with the (second) smallest AIC and BIC. The asterisks, ***, 
**, and *, represent statistical significance at the 1%, 5%, and 10%, respectively. 
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Table A.2. Determinants of Forecast Inaccuracy, Soybeans 
  (1) (2) (3) (4) (5) (6) 

  

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 

Absolute 
Forecast 

Error 
Prior Absolute 
  Forecast Error 

-0.042 -0.040         
(0.050) (0.047)         

Prior Accuracy 
  Score  

    0.003       
    (0.003)       

Boldness Score 0.014***   0.014***       
(0.003)   (0.003)       

Prior Accuracy 
  Rank 

      -0.022     
      (0.018)     

Boldness Rank       -0.074***     
      (0.016)     

Prior Top 5% 
  Accuracy Score 

        0.081 0.068 
        (0.312) (0.307) 

Prior Bottom 5% 
  Accuracy Score 

          -0.061 
          (0.275) 

Top 5%  
  Boldness Score 

  1.617***     1.617*** 1.577*** 
  (0.465)     (0.468) (0.487) 

Bottom 5% 
  Boldness Score 

          -0.340* 
          (0.188) 

Experience -0.077 -0.100 -0.075 -0.084 -0.096 -0.093 
(0.084) (0.080) (0.085) (0.084) (0.080) (0.082) 

Prior Success 
  Frequency 

0.127 0.134 0.093 0.080 0.161** 0.144 
(0.088) (0.088) (0.089) (0.091) (0.079) (0.093) 

Constant 2.448*** 2.975*** 2.253*** 3.688*** 2.858*** 2.931*** 
(0.814) (0.781) (0.743) (0.651) (0.703) (0.757) 

Firm effects Yes Yes Yes Yes Yes Yes 
Year effects Yes Yes Yes Yes Yes Yes 
Observations 316 316 316 316 316 316 
No. of groups 24 24 24 24 24 24 
Loglikelihood -507.874 -506.912 -507.304 -509.602 -507.093 -506.172 
AIC 1,061.747 1,059.825 1,060.607 1,065.204 1,060.186 1,058.344 
BIC 1,148.129 1,146.207 1,146.989 1,151.586 1,146.568 1,144.726 

Notes: Estimation results of equation (A.1) are presented along with alternative control variables. Robust standard 
errors are in parentheses.  Forecast error is defined in percentage terms as FEit = 100×[(Actualt − Forecastit) / 
Actualt], and forecast deviation in percentage terms as FDEVit = 100×[(Forecastit − Forecast-i,t) / Forecast-i,t], where 
Forecast-i,t is the median of the forecasts made by other firms. Accuracy and boldness scores are calculated as Scoreit 
= 100 − [(Rankit−1) / (Number of firmst−1)]×100, where Rankit is assigned for the accuracy score by ranking the 
absolute forecast error from the smallest to the largest value, with the smallest forecast error having the rank of one, 
and for the boldness score by ranking the absolute forecast deviation from the largest to the smallest value, with the 
largest forecast deviation having the rank of one. Experience is the running total of years firms provided a forecast 
and prior success frequency is the number of times a firm’s absolute forecast error was below the median of other 
firms’ forecasts errors in the last three periods, calculated as Freqit = Count (|FEi,t-j| < |FE-i,t-j|), j=1, 2, 3. Other 
variables are indicator variables for forecasts being in the specified percentile of the accuracy or boldness score 
distributions. Constant refers to the average of firm fixed effects. AIC refers to Akaike information criteria and BIC 
is Bayesian information criteria. The dark (light) gray shaded column represents the model with the (second) 
smallest AIC and BIC. The asterisks, ***, **, and *, represent statistical significance at the 1%, 5%, and 10%, 
respectively.
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Table A.3. Volatility Reaction Tests with Attribution Bias, Corn 

  (1) (2) (3) (3') (4) (4') 

      
Ex-post 

[Table A.1(1)] 
Ex-ante 

[Table A.1(1)] 
Ex-post 

[Table A.1(3)] 
Ex-ante 

[Table A.1(3)] 
  Volatility Volatility Volatility  Volatility Volatility Volatility 
Median Absolute 
  Surprise 

0.773*** 
     

(0.244) 
     

Observed Absolute 
  Surprise 

 
0.415*** 

    
 

(0.043) 
    

Predicted Absolute 
  Surprise  

  
0.666*** 0.097 0.677*** -0.136*   

(0.053) (0.130) (0.053) (0.075) 
Unpredicted Absolute 
  Surprise  

 
 

0.008 0.484*** 0.010 0.114*   
(0.095) (0.070) (0.098) (0.067) 

Constant 0.988* 1.748*** 1.284*** 1.948*** 1.264*** 2.947*** 
  (0.546) (0.093) (0.131) (0.278) (0.127) (0.149) 
Symmetric Volatility 
  Reaction (χ2)  

   26.14*** 5.94*** 25.74*** 3.14* 
     [0.00]  [0.01]  [0.00]  [0.08] 

              
Observations 30 459 316 260 316 260 
No. of groups   24         
Firm effects   Yes         

Notes: Estimation results of equation (A.4) are presented with robust standard errors in parentheses. Observed absolute surprise (i.e., 
absolute forecast error) is defined in percentage terms as |SURPit| = | 100 × [(Actualt − Forecastit) / Actualt] |, where Forecastit is the 
forecast made by firm i. Median absolute surprise is the median of absolute surprises across firms within a year, defined as 
MED(|SURPt|) = median( |SURPit| ). Predicted and unpredicted absolute surprises are, respectively, the predicted dependent variables 
and predicted residuals from model (1) in table A.1 with the minimum AIC and BIC and from model (3) with the second smallest AIC 
and BIC. To account for the increased sampling variability induced by using generated regressors, models (3)-(4') are estimated via 
the generalized method of moments (GMM). Symmetric volatility reaction (Chi-squared test, with p-values in brackets) tests the 
equality of the coefficient estimates for predicted and unpredicted absolute surprises. The asterisks, ***, **, and *, represent statistical 
significance at the 1%, 5%, and 10%, respectively. 
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Table A.4. Volatility Reaction Tests with Attribution Bias, Soybeans 

  (1) (2) (3) (3') (4) (4') 

      
Ex-post 

[Table A.2(6)] 
Ex-ante 

[Table A.2(6)] 
Ex-post 

[Table A.2(3)] 
Ex-ante 

[Table A.2(3)] 
  Volatility Volatility Volatility  Volatility Volatility Volatility 
Median Absolute 
  Surprise 

0.671** 
     

(0.278) 
     

Observed Absolute 
  Surprise 

 
0.354*** 

    
 

(0.051) 
    

Predicted Absolute 
  Surprise  

  
0.602*** -0.145*** 0.579*** -0.158***   

(0.076) (0.059) (0.076) (0.053) 
Unpredicted Absolute 
  Surprise  

 
 

-0.296*** 0.096** -0.268*** 0.101***   
(0.108) (0.050) (0.106) (0.046) 

Constant 0.503 1.220*** 0.738*** 2.320*** 0.773*** 2.318*** 
  (0.684) (0.134) (0.215) (0.165) (0.211) (0.155) 
Symmetric Volatility 
  Reaction (χ2)  

   35.58*** 5.18** 32.31*** 7.06*** 
     [0.00]  [0.02]  [0.00]  [0.01] 

              
Observations 30 459 316 260 316 260 
No. of groups   24         
Firm effects   Yes         

Notes: Estimation results of equation (A.4) are presented with robust standard errors in parentheses. Observed absolute surprise (i.e., 
absolute forecast error) is defined in percentage terms as |SURPit| = | 100 × [(Actualt − Forecastit) / Actualt] |, where Forecastit is the 
forecast made by firm i. Median absolute surprise is the median of absolute surprises across firms within a year, defined as 
MED(|SURPt|) = median( |SURPit| ). Predicted and unpredicted absolute surprises are, respectively, the predicted dependent variables 
and predicted residuals from model (1) in table A.2 with the minimum AIC and BIC and from model (3) with the second smallest AIC 
and BIC. To account for the increased sampling variability induced by using generated regressors, models (3)-(4') are estimated via 
the generalized method of moments (GMM). Symmetric volatility reaction (Chi-squared test, with p-values in brackets) tests the 
equality of the coefficient estimates for predicted and unpredicted absolute surprises. The asterisks, ***, **, and *, represent statistical 
significance at the 1%, 5%, and 10%, respectively. 

 


